$[Ni(C_5H_8NOS_2)(C_{26}H_{24}P_2)]ClO_4.CH_2Cl_2$

C27—N28A	1.351 (13)	Cl3—O4	1.35 (2)
C27—N28B	1.347 (13)	Cl3—O1A	1.253 (10)
N28A—C29A	1.49 (2)	C13—O2A	1.304 (13)
N28A-C33A	1.48 (2)	C13—O3A	1.333 (14)
C29A—C30A	1.51 (2)	C13O4A	1.41 (2)
C30A—O31A	1.48 (5)		
P1—Ni—P2	86.81 (4)	N28A—C29A—C30A	110.0 (9)
P1—Ni—S1	102.69 (4)	O31A-C30A-C29A	109.8 (18)
P2—Ni—S2	93.93 (4)	C32A—O31A—C30A	110 (3)
\$1Ni\$2	79.36 (4)	O31A—C32A—C33A	113.2 (15)
C27—S1—Ni	84.51 (14)	N28A—C33A—C32A	109.4 (10)
C27—S2—Ni	85.21 (14)	C27—N28B—C29B	122.7 (11)
C3-P1-C9	104.1 (2)	C27—N28B—C33B	123.7 (10)
C3-P1-C2	105.3 (2)	C33BN28BC29B	113.5 (10)
C9—P1—C2	107.1 (2)	N28B—C29B—C30B	109.9 (9)
C3—P1—Ni	104.67 (13)	O31B—C30B—C29B	107.7 (22)
C9-P1-Ni	125.41 (14)	C32B-O31B-C30B	113 (3)
C2—P1—Ni	108.54 (13)	O31B-C32B-C33B	112.0 (20)
C15—P2—C21	107.4 (2)	N28BC33BC32B	109.7 (10)
C15—P2—C1	107.8 (2)	CI1-C34-C12	114.6 (4)
C21—P2—C1	107.1 (2)	01—Cl3—O2	91.8 (13)
C15—P2—Ni	115.30 (13)	O1—C13—O3	115.9 (18)
C21-P2-Ni	109.00 (14)	01-Cl3-04	124.8 (14)
C1—P2—Ni	109.92 (13)	O2—C13—O3	104.9 (14)
N28 <i>B</i> —C27—S2	123.4 (6)	O2-C13-O4	108.5 (17)
N28A—C27—S2	122.4 (6)	O3-C13-O4	107.8 (19)
N28B—C27—S1	123.5 (6)	O1A-Cl3-O2A	128.8 (14)
N28A—C27—S1	123.7 (6)	01A-Cl3-O3A	84.5 (15)
S2-C27-S1	110.8 (2)	01A-C13-O4A	113.6 (14)
C27—N28A—C29A	123.8 (10)	02A-C13-O3A	107.2 (17)
C27—N28A—C33A	122.1 (10)	02A-Cl3-O4A	112.5 (16)
C33A—N28A—C29A	112.4 (10)	O3A-Cl3-O4A	101.0 (11)

Data collection, cell refinement and data reduction were performed using XSCANS (Siemens, 1991). The structure was solved by direct methods using SHELXS86 (Sheldrick, 1990a) and refined using SHELXL93 (Sheldrick, 1993). Atoms in the morpholine ring showed very high disorder with unreliable C-C bond lengths (1.12 Å). Moreover, the displacement ellipsoids for all the atoms in the ring were oriented in the same direction, *i.e.* perpendicular to the mean plane of the ring. Hence, it was decided to consider the morpholine ring as two entities with opposite orientations (A and B) and the occupancies of A and B were initially refined and then fixed at 0.5. The atoms in A and B were refined anisotropically with the same U_{ij} values being assigned to the same atom species $(N28A \equiv N28B, O31A \equiv O31B, CnA \equiv CnB)$. The O atoms of the disordered perchlorate group were divided into two sets, each having 0.5 occupancy, and refined anisotropically. The H atoms were fixed geometrically and not refined, but were allowed to ride on those atoms to which they are attached. SHELXTL/PC (Sheldrick, 1990b) software was used for the molecular graphics and PARST (Nardelli, 1983) was used for all other geometrical calculations.

One of the authors (KC) thanks Universiti Sains Malaysia for a Visiting Post Doctoral Research Fellowship.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: LI1125). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Aravamudan, G., Brown, D. H. & Venkappayya, D. (1971). J. Chem. Soc. A, pp. 2744–2747.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved Butcher, R. J. & Sinn, E. (1975). J. Chem. Soc. Dalton Trans. pp. 2517-2522.

- Butcher, R. J. & Sinn, E. (1976). J. Am. Chem. Soc. 98, 2440-2449,
- Esperas, S. & Husebye, S. (1975). Acta Chem. Scand. Ser. A, 29, 185-194.
- Gabor, B., Krüger, C., Marczinke, B., Mynott, R. & Wilke, G. (1991). Angew. Chem. Int. Ed. Engl. 30, 1666–1668.
- Healy, P. C. & Sinn, E. (1974). Inorg. Chem. 14, 109-115.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Ramalingam, K., Aravamudan, G. & Seshasayee, M. (1987). Inorg. Chim. Acta. 128, 231-237.
- Ramalingam, K., Aravamudan, G., Seshasayee, M. & Subramanyam, Ch. (1984). Acta Cryst. C40, 965–967.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1990b). SHELXTL/PC Users Manual. Siemens
- Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. Univ. of Göttingen, Germany.
- Siemens (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Stahl, K. (1983a). Acta Cryst. B39, 612-620.
- Stahl, K. (1983b). Inorg. Chim. Acta, 75, 85-91.

Acta Cryst. (1995). C51, 370-374

fac-[Co(C₅H₄NOS)₃].H₂O. $\frac{1}{2}$ CH₃OH and fac-[Co(C₅H₄NOS)₃]. $\frac{1}{3}$ CH₃OH

Yong-Jin Xu, Bei-Sheng Kang,* Xue-Tai Chen and Liang-Reng Huang

State Key Laboratory of Structural Chemistry and Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

(Received 23 September 1993; accepted 1 June 1994)

Abstract

Crystals of tris(2-mercaptopyridine N-oxido)cobalt-(III) monohydrate hemimethanol solvate, fac- $[Co(C_5H_4NOS)_3]$.H₂O. $\frac{1}{2}CH_3OH$ (1), contain fac- $[Co(III)(mpo)_3]$ (Hmpo = 2-mercaptopyridine Noxide), H₂O and MeOH molecules linked by hydrogen bonds. The asymmetric unit consists of two molecules of the cobalt complex, two water and one methanol molecule. The asymmetric unit of the closely related complex tris(2-mercaptopyridine *N*-oxido)cobalt(III) ¹/₃-methanol solvate, fac- $[Co(C_5H_4NOS)_3]_3CH_3OH$ (2), contains three discrete Co(mpo)₃ molecules and one MeOH molecule which is linked to one of the Co(mpo)₃ units via a hydrogen bond. The Co^{III} complex molecules in (1) and (2) do not differ significantly. Each Co atom is coordinated by an O₃S₃ donor set which defines a distorted facial octahedron. Three mpo ligands are chelated to each Co atom, the average O-Co-S

bite angle is 87.5 (2) for (1) and 87.4 (2)° for (2). The average Co—S and Co—O distances are 2.205 (3) and 1.942 (2) Å, respectively, for (1), and 2.205 (3) and 1.951 (5) Å, respectively, for (2).

Comment

Both compounds (1) and (2) were synthesized as part of our investigation of transition metal complexes with bidentate sulfur-oxygen ligands (Kang, Weng, Wu, Wang, Guo, Huang, Huang & Liu, 1988; Chen, Hu, Weng, Xu, Wu & Kang, 1991). Seven chelating modes for the ligand o-mercaptophenol (H_2mp) have been observed in a series of mixed O,S-ligated transition metal complexes (Kang, Weng, Liu, Wu,

Fig. 1. Structure and atomic labelling of (1) with displacement ellipsoids drawn at the 40% probability level (*ORTEPII*; Johnson, 1976).

Huang, Lu, Cai, Chen & Lu, 1990; Kang, Peng, Hong, Wu, Chen, Weng, Lei & Liu, 1991; Kang, Hu, Weng, Wu, Chen & Xu, 1992). We have now extended our research to the ligand 2-mercaptopyridine *N*-oxide (Hmpo).

The structures of the Co(mpo)₃ units of both compounds are quite similar to those reported earlier for fac-[Co(mpo)₃].MeCN (Hu, Weng, Huang, Chen, Wu & Kang, 1991) although the average Co-S, Co-O and S-C distances in (1) and (2) are all lengthened slightly (by nearly 0.01 Å) as a result of the presence of hydrogen bonds and also of differences in the molecular packing. The average O-N distances are within the range found for other mpoligated complexes (Kang, Xu, Peng, Wu, Chen, Hu, Hong & Lu, 1993). In compound (1), the ligand atoms O(4) and O(6) are connected to $H_2O(w)$ and the atom O(5) to $H_2O(ww)$ via weak hydrogen bonds, while the latter water molecule $[H_2O(ww)]$ is also hydrogen bonded to $H_2O(w)$ and MeO(1m)H. The mean chelate angles Co-S-C and Co-O-N $[96.4(2) \text{ and } 115.8(2)^{\circ}, \text{ respectively, for (1), and}$ 97.1 (2) and 115.8 (2)°, respectively, for (2)] and the mean bite angle of 87.5 (2) in (1) and 87.4 (2) $^{\circ}$ in (2) are very close to those reported by Kang, Xu, Peng,

Fig. 2. Structure and atomic labelling of (2) with displacement ellipsoids drawn at the 40% probability level (ORTEPII; Johnson, 1976).

Wu, Chen, Hu, Hong & Lu (1993), and correspond well to the previous interpretation of bonding orbitals. The packing of the molecules of (2) in the unit cell is interesting, consisting of two sets of staircaselike stripes made up of parallel and independent triangular units of three Co(mpo)₃ groups with one MeOH tail (via a hydrogen bond). This type of arrangement of molecular units may lead to interesting physical properties which are still under investigation. Figs. 1 and 2 show the asymmetric units of (1) and (2), respectively.

Experimental

Crystals of (1) were obtained from the reaction of CoCl₂ with mpoNa (1:2 ratio) in MeOH solvent (AR, 0.5% water) at room temperature, while those of (2) came from the reaction of CoCl₂ with mpoNa (1:2 ratio) in anhydrous MeOH (dried vigorously before use) at room temperature.

Compound (1)

Crystal data

refined

$[Co(C_{5}H_{4}NOS)_{3}].H_{2}O\frac{1}{2}CH_{4}O$ $M_{r} = 471.44$ Triclinic $P\overline{1}$ a = 12.679 (6) Å b = 14.794 (10) Å c = 12.653 (7) Å $\alpha = 114.16$ (5)° $\beta = 117.54$ (4)° $\gamma = 75.97$ (6)° V = 1915.9 Å ³ Z = 4 $D_{x} = 1.63$ Mg m ⁻³	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters from 20 reflections $\theta = 9-12^{\circ}$ $\mu = 1.24 \text{ mm}^{-1}$ T = 293 K Cube $0.30 \times 0.25 \times 0.20 \text{ mm}$ Black
Data collection Rigaku AFC-5 <i>R</i> diffractom- eter $\omega - 2\theta$ scans Absorption correction: empirical $T_{min} = 0.901, T_{max} = 0.996$ 7088 measured reflections 6944 independent reflections 2728 observed reflections $[I > 2\sigma(I)]$	$R_{int} = 0.082$ $\theta_{max} = 25^{\circ}$ $h = 0 \rightarrow 15$ $k = -17 \rightarrow 17$ $l = -15 \rightarrow 13$ 3 standard reflections monitored every 250 reflections intensity decay: 0.8%
Refinement Refinement on F R = 0.062 wR = 0.064 S = 1.36 2584 reflections 487 parameters H-atom parameters not	$w = 4F_o^2/\sigma^2(F_o^2)$ $(\Delta/\sigma)_{max} = 0.42$ $\Delta\rho_{max} = 0.65 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.52 \text{ e } \text{\AA}^{-3}$ Extinction correction: none Atomic scattering factors from Cromer & Waber

Compound (2)

Crystal data	
$[Co(C_5H_4NOS)_3].\frac{1}{3}CH_4O$ $M_r = 448.08$ Monoclinic $P2_1/n$ a = 21.997 (11) Å	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters from 20 reflections $\theta = 9-12^{\circ}$
b = 9.094 (5) Å c = 27.594 (9) Å $\beta = 95.87 (4)^{\circ}$ $V = 5490.8 \text{ Å}^{3}$ Z = 12 $D_{x} = 1.63 \text{ Mg m}^{-3}$	$\mu = 1.24 \text{ mm}^{-1}$ T = 296 (1) K Cubes $0.41 \times 0.33 \times 0.24 \text{ mm}$ Black

Data collection

(1974)

Rigaku AFC-5R diffractom- eter	5535 observed reflections $[I > 3\sigma(I)]$
ω -2 θ scans	$R_{\rm int} = 0.046$
Absorption correction:	$\theta_{\rm max} = 25^{\circ}$
empirical	$h = 0 \rightarrow 26$
$T_{\min} = 0.810, T_{\max} =$	$k = 0 \rightarrow 10$
1.00	$l = -32 \rightarrow 32$
10 629 measured reflections	3 standard reflections
10 614 independent	monitored every 250
reflections	reflections
	intensity decay: 0.4%

Refinement

Refinement on F R = 0.052wR = 0.062S = 1.385523 reflections 694 parameters H-atom parameters not refined

: 0.4% $w = 1/[\sigma^2(F_o^2) + (0.010F_o)^2]$ +1] $(\Delta/\sigma)_{\rm max} = 0.03$ $\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.57 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: none Atomic scattering factors

from Cromer & Waber

(1974)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (1)

$$B_{\rm eq} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	Z	Beq
Co(1)	0.4826(1)	0.7273 (1)	0.3470(1)	2.61 (4
Co(2)	0.1697 (1)	0.7858(1)	0.7138(1)	2.74 (4
S(1)	0.5732 (3)	0.7724 (2)	0.2659 (3)	3.80 (9
S(2)	0.3152 (3)	0.7950 (2)	0.9017 (3)	3.54 (8
S(3)	0.0415 (3)	0.7515 (2)	0.7621 (3)	3.50 (9
S(4)	0.1180 (3)	0.9463 (2)	0.7803 (3)	3.43 (9
S(5)	0.4449 (3)	0.8838 (2)	0.4484 (3)	3.45 (9
S(6)	0.6502 (3)	0.7203 (2)	0.5128 (3)	3.64 (9
O(w)	0.1568 (9)	0.7169 (8)	0.3644 (9)	7.9 (4)
O(ww)	0.139 (2)	0.606 (2)	0.129 (2)	14 (1)
O(1)	0.5089 (6)	0.5907 (5)	0.2463 (6)	3.2 (2)
O(1 <i>m</i>)	-0.089 (2)	0.665 (3)	-0.0221 (2)	19 (1)
O(2)	0.2870 (6)	0.8087 (5)	0.6705 (6)	3.2 (2)
C(2m)	-0.097 (3)	0.736 (3)	0.084 (4)	15 (2)
O(3)	0.1984 (6)	0.6444 (5)	0.6393 (6)	3.5 (2)
O(4)	0.0516 (7)	0.7803 (5)	0.5447 (6)	3.9 (2)
O(5)	0.3275 (6)	0.7341 (5)	0.2097 (6)	3.4 (2)
O(6)	0.4054 (6)	0.6767 (5)	0.4114 (6)	3.6 (2)

Table 3. Fractional atomic coordinates and equivalent

N(1) 0.3919 (7) 0.373 (6) 0.769 (7) 1.21 (2) isotropic displacement parameters (Å ³) for (2) N(3) 0.2323 (7) 0.2323 (6) 0.2311 (7) 2.4 (2) $B_{eq} = (4/3)\Sigma_{c} \Sigma_{c} \beta_{c} h_{c} h_{c} + J_{c} + J_{c} h_{c} + J_{c} + J_{c} h_{c} + J_{c} + J_{c} + J_{c} h_{c} + J_{c} + J_{c} + J_{c} h_{c} + J_{c} + J_{c}$	N(11)	0.5769 (7)	0.5755 (6)) 0.1848 (7)	2.8 (2)	Table 3	. Fractional	atomic coor	dinates and	equivale
$ \begin{array}{c} \mathbf{R}_{(11)} & 0.138(3) & 0.324.10 & 0.931(1) & 14(3) & \mathbf{R}_{(21)} & \mathbf{R}_{(21$	N(21)	0.3919 (7)	0.8373 (6) 0.7669 (7)	2.5 (2)	iso	tropic displa	acement parar	neters (Ų) fe	or (2)
$ \begin{array}{c} n(3) & -0.232 (n) & 0.236 (n) & 0.211 (r) & 2.9 (1) \\ n(3) & 0.236 (n) & 0.236 (n) & 0.211 (r) & 2.9 (1) \\ n(4) & 0.238 (n) & 0.236 (n) & 0.217 (n) & 3.4 (n) \\ n(4) & 0.038 (n) & 0.238 (n) & 0.237 (n) & 3.4 (n) \\ n(4) & 0.036 (n) & 0.238 (n) & 0.237 (n) & 0.345 (n) \\ n(4) & 0.036 (n) & 0.238 (n) & 0.238 (n) \\ n(4) & 0.036 (n) & 0.238 (n) & 0.112 (n) & 5.9 (n) & 0.12 (n) & 0.238 (n) & 0.238 (n) \\ n(4) & 0.036 (n) & 0.238 (n) & 0.112 (n) & 5.9 (n) & 0.12 (n) & 0.497 (n) & 0.238 (n) \\ n(4) & 0.036 (n) & 0.238 (n) & 0.112 (n) & 5.6 (n) & 1.2 (n) & 0.497 (n) & 0.0488 (n) & 0.0388 (n) \\ n(2) & 0.233 (n) & 0.238 (n) & 0.121 (n) & 5.6 (n) & 1.2 (n) & 0.448 (n) & 0.0488 (n) & 0.488 (n) & 4.06 (n) \\ n(2) & 0.036 (n) & 0.036 (n) & 0.597 (n) & 5.6 (n) & 5.6 (n) & 0.038 (n) & 0.0388 (n) & 0.466 (n) \\ n(2) & 0.036 (n) & 0.0378 (n) & 5.6 (n) & 5.6 (n) & 5.2 (n) & 0.038 (n) & 0.0483 (n) & 3.4 (n) & 0.6 (n) & 0.038 (n) & 0.037 (n) & 0.066 (n) & 1.4 (n) & 5.2 (n) & 0.038 (n) & 0.038 (n) & 0.038 (n) & 0.037 (n) & 0.066 (n) & 0.459 (n) & 0.12 (n) & 0.038 (n) & 0.038 (n) & 0.037 (n) & 0.066 (n) & 0.459 (n) & 0.038 (n) & 0.037 (n) & 0.066 (n) & 0.459 (n) & 0.038 (n) & 0.037 (n) & 0.048 (n) & 0.043 (n) & 0.038 (n) & 0.037 (n) & 0.048 (n) & 0.038 (n) & 0.037 (n) & 0.008 (n) & 0.031 (n) & 0.037 (n) & 0.008 (n) & 0.031 (n) & 0.037 (n) & 0.038 (n) & 0.037 (n) & 0.008 (n) & 0.50 (n) & 0.001 (n) & 0.037 (n) & 0.038 (n) & 0.037 (n) & 0.003 (n) & 0.007 (n) & 0.001 (n) & 0.037 (n) & 0.038 (n) $	N(31)	0.1438 (8)	0.5842 (6) 0.6491 (/)) 0.5381 (7)	2.8(3) 34(3)		nepre unipre		, , , , , , , , , , , , , , , , , , ,	
$ \begin{array}{c} \mathbf{x} (a) \\ \mathbf{x} (b) \\ \mathbf{x} (c) \\ x$	N(41) N(51)	-0.0180(8) 0.2823(7)	0.8049 (0	0.2151(7)	2.9(2)		Be	$_{q} = (4/3) \Sigma_{i} \Sigma_{j} \beta_{i}$	ij a i.aj.	
$ \begin{array}{c} c_{12} \\ c_{13} \\ c_{13} \\ c_{14} \\ c_{14} \\ c_{16} \\ c_{1$	N(61)	0.4782 (8)	0.6535 (6) 0.5174 (7)	2.9 (3)		x	ν	z	Bea
$ \begin{array}{c} C(13) & 0.672 (10) & 0.493 (10) & 0.493 (10) & 49 (4) & C_{0}(2) & 1.02291 (5) & -0.1179 (1) & 0.8897 (4) & 228 (2) \\ C(14) & 0.056 (10) & 0.514 (10) & 0.0451 (10) & 0.416 (10) & 0.410 & 0.271 (2) \\ 0.0570 (10) & 0.0514 (10) & 0.0514 (10) & 0.1810 (10) & 1.61 (2) & S(11) & 0.0256 (1) & 0.1273 (1) & 0.6198 (6) & 1.310 (2) \\ C(22) & 0.420 (10) & 0.852 (10) & 0.545 (10) & 0.54 (1) & 0.513 (1) & 0.0256 (1) & -0.168 (13) & 0.8897 (4) & 4.86 (1) \\ C(23) & 0.050 (10) & 0.862 (10) & 0.854 (10) & 5.7 (5) & S(12) & 0.0554 (1) & -0.618 (13) & 0.9393 (1) & 4.86 (5) \\ C(24) & 0.060 (10) & 0.865 (10) & 0.954 (10) & 5.7 (5) & S(22) & 1.048 (1) & 0.018 (3) & 0.9393 (1) & 4.86 (5) \\ C(25) & 0.053 (10) & 0.058 (10) & 0.556 (10) & 5.56 (10) & 5.64 (1) & S(13) & 0.3393 (1) & 0.3726 (3) & 0.6383 (2) & 0.353 (1) \\ C(13) & 0.0038 (10) & 0.558 (10) & 0.556 (10) & 5.44 (10) & S(13) & 0.3393 (1) & 0.3726 (3) & 0.6383 (2) & 3.31 (1) \\ C(15) & 0.1038 (10) & 0.558 (10) & 0.4271 (10) & 3.34 (3) & O(11) & 0.2136 (1) & -0.0386 (1) & 0.4383 (2) & 3.01 (1) \\ C(14) & -0.157 (10) & 0.0297 (10) & 0.4471 (10) & 3.34 (3) & O(12) & 0.6868 (2) & -0.0098 (6) & 0.5381 (2) & 3.01 (1) \\ C(15) & 0.1095 (10) & 0.4221 (6) & 0.04971 (10) & 3.34 (6) & O(21) & 0.0488 (1) & 0.318 (1) & 0.338 (1) & 0.3$	C(12)	0.6061 (10)	0.4797 (8	0.1227 (9)	3.4 (3)	Co(1)	0.78735 (5)	0.0729(1)	0.63754 (4)	2.46 (2)
$ \begin{array}{c} C(14) & 0.796 (10) & 0.3374 (10) & 0.4883 (10) & 61 (3) & Cot3) & 0.4197 (5) & 0.2288 (11) & 0.5897 (4) & 271 (2) \\ C(15) & 0.6790 (10) & 0.334 (7) & 0.3815 (9) & 225 (1) & 51 (1) & 0.7964 (1) & -0.4688 (3) & 0.64997 (8) & 3.34 (5) \\ C(22) & 0.4321 (10) & 0.8295 (10) & 0.5244 (10) & 57 (5) & S(22) & 1.0456 (1) & 0.0181 (3) & 0.8385 (1) \\ C(23) & 0.6321 (10) & 0.8905 (10) & 0.5544 (10) & 57 (5) & S(22) & 1.0456 (1) & 0.0181 (3) & 0.8385 (1) \\ C(24) & 0.6064 (10) & 0.8905 (10) & 0.5544 (10) & 57 (5) & S(22) & 1.0456 (1) & 0.0185 (3) & 0.92733 (9) & 3.64 (5) \\ C(25) & 0.6331 (10) & 0.6373 (0) & 0.7444 (10) & 3.46 (1) & S(31) & 0.4332 (1) & 0.1452 (3) & 0.8335 (3) & 0.3733 (3) & 3.64 (5) \\ C(30) & 0.0331 (10) & 0.0376 (0) & 0.7494 (10) & 3.54 (1) & 2037 (1) & 0.4372 (1) & 0.8337 (2) & 0.8333 (2) & 3.16 (1) \\ C(31) & 0.0338 (10) & 0.4578 (9) & 0.6666 (10) & 4.54 (4) & 2031 & 0.4578 (3) & 0.1737 (6) & 0.8333 (2) & 3.16 (1) \\ C(34) & 0.048 (10) & 0.4498 (9) & 0.6666 (10) & 4.54 (4) & 2031 & 0.4578 (3) & -0.0734 (6) & 0.8373 (2) & 3.16 (1) \\ C(44) & 0.041 (10) & 0.4599 (7) & 0.4044 (10) & 5.34 (4) & 0.031 & 0.4621 (3) & 0.0767 (3) & -0.0734 (6) & 0.8377 (2) & 3.24 (1) \\ C(44) & 0.041 (10) & 0.2587 (9) & 0.4421 (10) & 5.34 (4) & 0.031 & 0.4621 (3) & 0.178 (6) & 0.8377 (2) & 3.24 (1) \\ C(44) & -0.157 (10) & 1.0294 (9) & 0.0314 (10) & 5.34 (4) & 0.031 & 0.4124 (3) & 0.3184 (7) & 0.8496 (2) & 3.31 (1) \\ C(45) & -0.138 (10) & 0.3594 (9) & 0.014 (10) & 5.84 (4) & 0.033 & 0.114 (3) & 0.3184 (7) & 0.8487 (2) & 3.10 (1) \\ C(45) & -0.105 (10) & 0.557 (9) & 0.014 (10) & 5.84 (4) & 0.033 & 0.114 (3) & 0.3184 (7) & 0.3578 (1) & 0.5378 (1) & $	C(13)	0.6724 (10)	0.4593 (9) 0.0594 (10)	4.9 (4)	Co(2)	1.05291 (5)	-0.1179 (1)	0.88477 (4)	2.98 (2)
C(15) 0.679 (10) 0.4545 (9) 0.121 (10) 3.9 (0) S(12) 0.2775 (3) 0.6797 (3) 1.34 (3) (10) 0.2775 (3) 0.6797 (3) 1.04 (3) 0.7008 (6) 0.7008 (6) 0.555 (1) 0.5753 (10) 0.3622 (9) 0.9797 (10) 4.2 (4) S(12) 0.5554 (1) -0.1681 (3) 0.9503 (1) 4.66 (6) (2) 0.656 (1) 0.556 (1) 0.5753 (10) 0.3622 (9) 0.9797 (10) 4.2 (4) S(22) 1.05554 (1) -0.1681 (3) 0.9503 (1) 0.9503 (10) 0.3555 (1) 0.5753 (10) 0.3755 (10) 0.5753 (10) 0.3755 (10) 0.5753 (10) 0.3750 (10) 3.46 (3) S(21) 0.5753 (1) 0.442 (3) 0.9443 (9) 3.46 (5) C(25) 0.6563 (10) 0.3750 (10) 3.46 (1) 3.46 (1) S(21) 0.3751 (1) 0.442 (3) 0.9443 (9) 3.46 (5) C(25) 0.668 (9) 0.6233 (8) 0.5783 (9) 2.364 (1) 4.53 (1) 0.5373 (1) 0.442 (3) 0.9443 (9) 3.46 (5) C(23) 0.0351 (10) 0.4575 (10) 0.4576 (10) 4.559 (10) 4.559 (10) 4.576 (10) 4.559 (10) 4.576 (10) 4.559 (10) 4.576 (10) 4.559 (10) 4.576 (10) 4.559 (10) 4.576 (10) 4.559 (10) 4.576 (10) 4.559 (10) 4.576 (10) 4.559 (10) 4.576 (10) 4.559 (10) 4.576 (10) 4.559 (10) 4.276 (10) 4.559 (10) 4.276 (10) 4.559 (10) 4.276 (10) 4.559 (10) 4.276 (10) 4.559 (10) 4.276 (10) 4.559 (10) 4.276 (10) 4.559 (10) 4.276 (10) 4.559 (10) 4.276 (10) 4.559 (10) 4.276 (10) 4.559 (10) 4.276 (10) 4.559 (10) 4.276 (10) 4.559 (10) 4.764 (10) 2.550 (10) 4.764 (10) 2.550 (10) 4.764 (10) 2.550 (10) 4.764 (10) 2.550 (10) 4.764 (10) 2.550 (10) 4.764 (10) 2.550 (10) 4.764 (10) 2.550 (10) 4.764 (10) 2.550 (10) 4.764 (10) 2.550 (10) 4.764 (10) 2.550 (10) 4.764 (10) 2.550 (10) 4.764 (10) 2.550 (10) 4.764 (10) 2.550 (10) 4.764 (10) 2.550 (10) 4.764 (10) 2.550 (10) 4.764 (10) 2.550 (10) 4.764 (10) 2.550 (10) 4.675 (10) 4.675 (10) 4.776 (10) 4.716 (10) 4.526 (10) 4.576 (10) 4.576 (10) 4.577 (10) 4.550 (10) 4.577 (10) 4.550 (10) 4.577 (10) 4.550 (10) 4.577 (10) 4.550 (10) 4.577 (10) 4.550 (10) 4.577 (10) 4.550 (10) 4.577 (10) 4.550 (10) 4.577 (10) 4.550 (10) 4.577 (10) 4.550 (10) 4.577 (10) 4.550 (10) 4.577 (10) 4.550 (10) 4.577 (10) 4.550 (10) 4.577 (10) 4.550 (10) 4.577 (10) 4.550 (10) 4.577 (10) 4.550 (10) 4.577 (10) 4.550 (10) 4.577 (10) 4.550 (10) 4.577 (10) 4.550 (10	C(14)	0.7066 (10)	0.5374 (1	0) 0.0488 (10)	6.1 (5)	Co(3)	0.41979 (5)	0.2285 (1)	0.86907 (4)	2.71 (2)
$ \begin{array}{c} C(16) & 0.012(19) & 0.0254(1) & 0.010(19) & 32(3) & S(12) & 0.7984(1) & -0.0488(13) & 0.0498(16) & 3.010(19) \\ C(20) & 0.0504(10) & 0.8965(10) & 0.9544(10) & 5.7(5) & S(21) & 1.0486(1) & 0.0185(13) & 0.9886(1) & 0.9876(1) \\ C(20) & 0.0503(10) & 0.8955(10) & 0.9544(10) & 5.7(5) & S(21) & 1.0486(1) & 0.0185(13) & 0.9878(1) & 0.306(1) \\ C(20) & 0.0533(10) & 0.8735(19) & 0.7440(10) & 3.8(4) & S(31) & 0.4332(1) & 0.1422(13) & 0.4943(19) & 3.8(5) \\ C(20) & 0.053(10) & 0.425(16) & 0.057(1) & 0.0442(13) & 0.4943(19) & 3.8(5) \\ C(30) & 0.038(10) & 0.4256(10) & 0.0574(10) & 1.4(4) & S(23) & 0.273(1) & 0.0442(13) & 0.4943(19) & 3.8(5) \\ C(31) & 0.038(10) & 0.4256(19) & 0.0604(19) & 2.2(3) & 0.0173(1) & 0.776(1) & -0.0234(6) & 0.9351(1 & 3.4(10) & 3.8(10) & 0.422(13) & 0.01796(1) & -3.556(1) & 0.9384(1) & 3.4(10) & 5.36(1 & 0.012) & 0.0176(1) & -0.0934(6) & 0.9351(2 & 3.8(1) & 3.4(10) & 3.4(6) & 0.021(1 & 1.030(1) & 0.0422(13) & 0.01796(1) & 3.455(1 & 3.4(10) & 3.4(10) & 0.336(1) & 0.0236(1) & 0.0236(1) & 0.0387(1) & 3.4(10) & 3.4(10) & 0.236(1) & 0.0376(1) & -0.0934(6) & 0.9387(1 & 3.4(1) & 0.4494(10) & 5.36(1 & 0.012) & 0.0136(10) & 0.0376(1) & -0.0234(6) & 0.9387(1 & 3.4(1) & 0.422(1) & 0.0376(1) & -0.0346(1) & 0.338(1) & 0.3184(7) & 0.338(1) & 0.3184(7) & 0.399(1) & 2.7(1) & 0.011(1) & 0.0236(9) & 0.316(100) & 5.36(1 & 0.0237(1) & 0.0331(5) & 0.3384(7) & 0.399(1) & 2.7(1) & 0.011(1) & 0.3285(1) & 0.0387(1) & 0.011(7) & 0.422(2) & 0.011(7) & 0.422(2) & 0.011(7) & 0.422(2) & 0.011(7) & 0.422(2) & 0.011(7) & 0.422(2) & 0.011(7) & 0.422(2) & 0.011(7) & 0.422(2) & 0.011(7) & 0.0235(1) & 0.039(1) & 0.011(7) & 0.0235(1) & 0.0335($	C(15)	0.6796 (10)	0.6345 (9	0.1121(10)	3.9(4)	S(11)	0.8056 (1)	0.2775 (3)	0.67997 (8)	3.24 (5)
$ \begin{array}{c} (22) & 0.233(10) & 0.3822(0) & 0.2797(0) & 4.2(4) & 8(11) & 0.0282(1) & 0.1488(12) & 0.0918(10) & 3.06(15) \\ (22) & 0.2733(10) & 0.2322(0) & 0.2336(10) & 5.5(4) & 8222) & 1.048(1) & 0.0183(1) & 0.9318(10) & 3.61(5) \\ (23) & 0.0383(10) & 0.253(10) & 0.354(10) & 3.5(4) & 8221 & 1.048(1) & 0.0183(1) & 0.9318(10) & 3.61(5) \\ (23) & 0.0183(10) & 0.253(0) & 0.2740(10) & 3.8(4) & 8231 & 0.343(1) & 0.1726(1) & 0.4842(3) & 0.94433(9) & 3.66(5) \\ (23) & 0.0185(10) & 0.4221(8) & 0.0497(10) & 4.1(6) & 8233 & 0.340(1) & 0.1726(1) & 0.4843(2) & 0.48438(1) & 0.376(1) \\ (23) & 0.0195(10) & 0.4221(8) & 0.0497(10) & 3.5(1) & 0.013 & 0.076(1) & -0.008(6) & 0.591(2) & 3.40(1) \\ (24) & 0.0061(10) & 0.459(7) & 0.0604(9) & 2.9(3) & 0.013 & 0.076(1) & -0.008(6) & 0.591(2) & 3.40(1) \\ (24) & 0.0061(10) & 0.459(7) & 0.0604(9) & 2.9(3) & 0.0221 & 1.1330(3) & 0.0422(7) & 0.8486(2) & 3.40(1) \\ (24) & 0.0061(10) & 0.359(7) & 0.0394(10) & 5.3(6) & 0.0221 & 1.1330(3) & 0.0422(7) & 0.8486(2) & 3.40(1) \\ (24) & -0.1576(10) & 1.0284(7) & 0.0378(10) & 4.2(4) & 0.021 & 1.0420(3) & -0.2184(6) & 0.591(2) & 3.40(1) \\ (25) & 0.2374(9) & 0.9669(7) & 0.2178(8) & 2.4(3) & 0.0313(1) & 0.3184(7) & 0.5907(2) & 3.30(1) \\ (25) & 0.2374(9) & 0.9669(7) & 0.2378(10) & 4.7(4) & 0.033 & 0.128(3) & 0.3184(7) & 0.5907(2) & 3.30(1) \\ (25) & 0.4384(10) & 0.3284(9) & 0.0374(10) & 4.0(3) & N(12) & 0.5776(3) & -0.0281(7) & 0.5907(3) & 3.30(1) \\ (25) & 0.4384(10) & 0.3284(9) & 0.0370(10) & 4.0(3) & N(12) & 0.5776(3) & -0.0281(7) & 0.5977(3) & 3.00(1) \\ (25) & 0.4384(10) & 0.3284(9) & 0.0371(10) & 4.0(3) & N(12) & 0.5776(3) & -0.0281(7) & 0.5977(3) & 3.00(1) \\ (25) & 0.4384(10) & 0.5384(10) & 0.550(10) & N(12) & 0.5776(3) & -0.0281(7) & 0.5377(3) & 0.3377(3) $	C(16)	0.6121 (9)	0.6534 (8	0.1810(9)	3.0 (3) 2.5 (3)	S(12)	0.7584 (1)	-0.0458 (3)	0.70088 (8)	3.10(5)
$ \begin{array}{c} 2129 \\ (225) \\$	C(22)	0.4200 (9)	0.8334 (7	0.0013(9)	$\frac{2.3(3)}{42(4)}$	S(13)	0.6926(1)	0.1468 (3)	0.01818(9)	3.34 (3)
$ \begin{array}{c} cross \\ cross $	C(23)	0.5525 (10)	0.8022 (9	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	5.7 (5)	S(21) S(22)	0.9554(1)	-0.1081(3)	0.8850(1)	3.61 (5)
$ \begin{array}{c} \hline class 1 (0) & 0.873 (0) & 0.740 (10) & 38 (4) & sc(1) & 0.442 (1) & 0.442 (3) & 0.8433 (9) & 3.36 (5) \\ \hline class 0 & 0.018 (10) & 0.558 (9) & 0.7190 (10) & 41 (4) & sc(3) & 0.3570 (1) & 0.0442 (3) & 0.8433 (9) & 3.36 (5) \\ \hline class 0 & 0.018 (10) & 0.558 (9) & 0.661 (10) & 4.36 (0) & 0.13 (0) & 0.5776 (3) & -0.0984 (6) & 0.8833 (5) & 3.70 (5) \\ \hline class 0 & 0.055 (10) & 0.422 (18) & 0.6847 (10) & 3.3 (3) & 0.(12) & 0.8689 (2) & -0.0984 (6) & 0.8833 (2) & 3.1 (1) \\ \hline class 0 & 0.068 (10) & 0.482 (10) & 0.482 (10) & 3.3 (3) & 0.(12) & 0.8689 (2) & -0.0984 (6) & 0.847 (2) & 3.4 (1) \\ \hline class 0 & 0.068 (10) & 0.482 (10) & 0.489 (10) & 3.2 (4) & 0.013 (10) & 0.0576 (3) & -0.0984 (6) & 0.847 (2) & 3.4 (1) \\ \hline class 0 & 0.068 (10) & 0.930 (9) & 0.0189 (10) & 3.2 (4) & 0.023 (1) & 0.0058 (1) & 0.8485 (2) & 3.3 (1) \\ \hline class 0 & -0.083 (10) & 0.939 (9) & 0.0494 (10) & 5.8 (4) & 0.023 (1) & 0.060 (3) & -0.314 (7) & 0.8845 (2) & 3.3 (1) \\ \hline class 0 & -0.183 (10) & 0.0396 (9) & 0.4043 (10) & 5.8 (4) & 0.023 (1) & 0.4833 (3) & 0.3184 (7) & 0.807 (2) & 3.1 (1) \\ \hline class 0 & 0.3274 (9) & 0.0908 (9) & 0.3176 (8) & 2.4 (3) & 0.013 (0) & 4.833 (3) & 0.3184 (7) & 0.807 (2) & 3.1 (1) \\ \hline class 0 & 0.102 (8) & 0.316 (10) & 3.6 (3) & N(11) & 0.833 (3) & 0.3184 (7) & 0.807 (2) & 3.1 (2) \\ \hline class 0 & 0.102 (8) & 0.2867 (10) & 4.0 (3) & N(12) & 0.873 (3) & 0.3184 (7) & 0.801 (2) & 2.4 (1) \\ \hline class 0 & 0.102 (8) & 0.2867 (10) & 4.0 (3) & N(12) & 0.873 (3) & 0.3184 (7) & 0.801 (2) & 2.4 (1) \\ \hline class 0 & 0.0234 (10) & 0.5384 (10) & 0.558 (10) & 4.0 (3) & N(12) & 0.833 (3) & 0.0176 (6) & 0.401 (2) & 2.4 (1) \\ \hline class 0 & 0.0234 (1) & 0.6278 (8) & 0.2967 (10) & 0.1384 (1) & 0.581 (1) & 0.668 (1) & 0.707 (1) & 2.4 (2) \\ \hline class 0 & 0.0234 (1) & 0.6278 (1) & 0.558 (10) & 4.0 (2) & 1.000 (2) & 0.0034 (9) & 0.218 (7) & 0.831 (1) & 0.558 (1) & 0.608 (1) & 0.707 (1) & 2.4 (2) \\ \hline class 0 & 0.0234 (1) & 0.558 (10) & 0.578 (1) & 0.058 (1) & 0.058 (1) & 0.578 (1) & 0.578 (1) & 0.578 (1) & 0.578 (1) & 0.578 (1) & 0.578 (1) & 0.578 (1) & 0.5$	C(24)	0.5733 (10)	0.9038 (1	0) 0.8361 (10)	5.6 (4)	S(22) S(23)	1.0758 (1)	-0.3205(3)	0.92733(9)	4.40 (6)
$ \begin{array}{c} \hline (212) \\ (213$	C(26)	0.4633 (10)	0.8735 (9	0.7440 (10)	3.8 (4)	S(31)	0.4332 (1)	0.1482 (3)	0.94483 (9)	3.80 (5)
$ \begin{array}{c} C(33) & 0.0138 (10) & 0.558 (e) & 0.7199 (10) & 4.1 (4) & S(33) & 0.3430 (1) & 0.3726 (3) & 0.88856 (8) & 3.70 (5) \\ C(35) & 0.1095 (10) & 0.4221 (8) & 0.6647 (10) & 3.5 (3) & 0.(12) & 0.8698 (2) & -0.00934 (6) & 0.6537 (2) & 3.2 (1) \\ C(36) & 0.164 (10) & 0.4859 (7) & 0.6049 (9) & 2.3 (3) & 0.776 (3) & 0.6438 (10) & 0.421 (4) & 0.0211 & 10.963 (3) & 0.04934 (6) & 0.5874 (2) & 3.4 (1) \\ C(42) & 0.0691 (9) & 0.0439 (9) & 0.6049 (9) & 2.4 (4) & 0.211 & 10.963 (3) & 0.04934 (6) & 0.5877 (2) & 3.4 (1) \\ C(44) & -0.157 (10) & 1.1025 (9) & 0.4043 (10) & 5.8 (4) & 0.211 & 10.963 (3) & 0.0424 (7) & 0.8845 (2) & 3.7 (1) \\ C(45) & -0.1331 (10) & 0.9395 (9) & 0.4043 (10) & 5.8 (4) & 0.211 & 0.0423 (3) & 0.1078 (6) & 0.8877 (2) & 3.1 (1) \\ C(52) & 0.3274 (9) & 0.9069 (7) & 0.3178 (8) & 2.4 (3) & 0.033 & 0.4124 (3) & 0.3184 (7) & 0.5901 (2) & 2.7 (1) \\ C(54) & 0.1829 (10) & 1.0125 (8) & 0.267 (10) & 4.0 (3) & N(12) & 0.8752 (2) & -0.1034 (8) & 0.8397 (2) & 3.3 (1) \\ C(55) & 0.4214 (10) & 0.6129 (8) & 0.3580 (10) & 5.6 (4) & N(22) & 0.1996 (3) & 0.0128 (6) & 0.8377 (2) & 3.6 (2) \\ C(56) & 0.4631 (10) & 0.651 (10) & 5.761 (0) & 7.1 (5) & N(31) & 0.3764 (7) & 0.9218 (3) & 3.7 (2) \\ C(56) & 0.4631 (10) & 0.5781 (10) & 0.7067 (1) & -0.1234 (8) & 0.5897 (3) & 3.7 (2) \\ C(56) & 0.4631 (10) & 0.5931 (10) & 0.7167 (10) & 7.1 (5) & N(31) & 0.3161 (3) & 0.3374 (7) & 9.3031 (3) & 3.3 (2) \\ C(66) & 0.5965 (10) & 0.6572 (8) & 0.5734 (9) & 3.7 (2) \\ C(11) & 0.8323 (4) & 0.3531 (10) & 0.5734 (9) & 3.7 (2) \\ C(11) & 0.8323 (4) & 0.3531 (9) & 0.6326 (3) & 2.4 (2) \\ C(11) & 0.8323 (4) & 0.3531 (10) & 0.5744 (9) & 3.7 (2) \\ C(11) & 0.8323 (4) & 0.3531 (10) & 0.5581 (4) & 4.9 (3) \\ C(11) & 0.8323 (4) & 0.3531 (10) & 0.558 (4) & 4.9 (3) \\ C(11) & 0.8323 (4) & 0.3531 (10) & 0.558 (4) & 4.9 (3) \\ C(11) & 0.8323 (4) & 0.3531 (10) & 0.558 (4) & 4.9 (3) \\ C(11) & 0.8323 (4) & 0.3531 (10) & 0.558 (4) & 4.9 (3) \\ C(11) & 0.8323 (4) & 0.3531 (10) & 0.558 (4) & 4.9 (3) \\ C(11) & 0.8323 (4) & 0.3531 (10) & 0.558 (4) & 4.9 (2) \\ C(11) & 0.8323 (4) $	C(32)	0.0689 (9)	0.6233 (8	6) 0.7083 (9)	2.8 (3)	S(32)	0.3570(1)	0.0442 (3)	0.84933 (9)	3.65 (5)
$\begin{array}{c} C(34) & 0.0338 (10) & 0.4578 (9) & 0.6664 (10) & 4.5 (4) & 0.(11) & 0.8219 (3) & 0.1739 (3) & 0.6583 (2) & 3.1 (1) \\ C(35) & 0.105 (10) & 0.4523 (2) & 0.6004 (9) & 23 (3) & 0.(73) & 0.767 (3) & -0.0098 (6) & 0.557 (2) & 3.2 (1) \\ C(42) & 0.001 (9) & 0.949 (8) & 0.558 (9) & 2.4 (3) & 0.(23) & 1.1030 (3) & 0.0452 (7) & 0.866 (2) & 3.5 (1) \\ C(44) & -0.1157 (10) & 1.10394 (9) & 0.5034 (10) & 5.3 (4) & 0.021 & 1.1360 (3) & 0.0745 (6) & 0.8877 (2) & 3.1 (1) \\ C(45) & -0.1151 (10) & 0.8557 (9) & 0.4215 (10) & 4.7 (4) & 0.022 & 0.4856 (3) & 0.0734 (6) & 0.8877 (2) & 3.1 (1) \\ C(54) & -1.015 (10) & 0.8557 (9) & 0.4215 (10) & 4.7 (4) & 0.021 & 0.4823 (3) & 0.0186 (6) & 0.807 (2) & 3.3 (1) \\ C(52) & 0.3271 (9) & 0.906 (7) & 0.3178 (8) & 2.4 (3) & 0.033 & 0.4124 (3) & 0.3108 (6) & 0.8071 (2) & 3.0 (1) \\ C(55) & 0.129 (10) & 1.0125 (8) & 0.207 (10) & 4.0 (3) & N1(1) & 0.8331 (3) & 0.0184 (6) & 0.8071 (2) & 3.0 (1) \\ C(55) & 0.1329 (10) & 0.1025 (8) & 0.037 (10) & 4.0 (3) & N1(1) & 0.8373 (3) & 0.0172 (18) & 0.8372 (3) & 3.1 (2) \\ C(56) & 0.189 (10) & 0.3288 (9) & 0.104 (10) & 4.5 (4) & N1(3) & 0.7076 (3) & -0.1051 (7) & 0.6917 (2) & 2.6 (1) \\ C(56) & 0.6802 (10) & 0.5738 (10) & 0.5790 (10) & 4.4 (4) & N1(2) & 0.9705 (3) & 0.00271 (8) & 0.8372 (3) & 3.3 (2) \\ C(16) & 0.6602 (10) & 0.5738 (10) & 0.5790 (10) & 4.4 (4) & N1(2) & 0.9705 (3) & 0.0371 (8) & 0.3872 (3) & 3.2 (2) \\ C(10) & -661 & 0.5738 (10) & 0.573 (4) & 3.37 (3) & N230 (3) (30 (10) & 0.3877 (8) & 0.5794 (4) & 2.2 (2) \\ C(11) & 0.8253 (4) & 0.3378 (10) & 0.6326 (4) & 2.33 (2) \\ C(11) & 0.8253 (4) & 0.3378 (10) & 0.6326 (4) & 2.33 (2) \\ C(11) & 0.8253 (4) & 0.3378 (10) & 0.6326 (4) & 2.33 (2) \\ C(11) & 0.8253 (4) & 0.3378 (10) & 0.6374 (4) & 3.3 (2) \\ C(11) & 0.8253 (4) & 0.3378 (10) & 0.6326 (4) & 2.4 (2) \\ C(11) & 0.8253 (4) & 0.3378 (10) & 0.6326 (4) & 2.4 (2) \\ C(11) & 0.8253 (4) & 0.3378 (10) & 0.6326 (4) & 2.4 (2) \\ C(11) & 0.8253 (4) & 0.3378 (10) & 0.6326 (4) & 2.4 (2) \\ C(11) & 0.8253 (4) & 0.3378 (10) & 0.6354 (4) & 3.3 (2) \\ C(11) & 0.8253 (4) & 0$	C(33)	0.0138 (10)	0.5586 (9) 0.7190 (10)	4.1 (4)	S(33)	0.3430(1)	0.3726 (3)	0.88365 (8)	3.70 (5)
$\begin{array}{c} C(35) & 0.1095 (10) & 0.4221 (8) & 0.6491 (10) & -35.13 & 0.0(12) & 0.8698 (2) & -0.00934 (6) & 0.5537 (2) & 3.2 (1) \\ C(42) & 0.0041 (9) & 0.9469 (8) & 0.6358 (9) & 24.31 & 0.0211 & 1.0303 (3) & 0.0432 (7) & 0.8466 (2) & 3.6 (1) \\ C(42) & -0.0571 (10) & 1.0394 (9) & 0.5313 (10) & 2.43 & 0.0211 & 1.1382 (1) & -0.2354 (7) & 0.8466 (2) & 3.7 (1) \\ C(45) & -0.1571 (9) & 1.0057 (9) & 0.4031 (10) & 5.8 (4) & 0.0311 & 0.4232 (3) & 0.0376 (6) & 0.8877 (2) & 3.1 (1) \\ C(45) & -0.1571 (9) & 1.0025 (8) & 0.3161 (10) & 3.6 (4) & 0.0311 & 0.4323 (3) & 0.1078 (6) & 0.8877 (2) & 3.3 (1) \\ C(52) & 0.3274 (9) & 0.9069 (7) & 0.3178 (8) & 2.4 (3) & 0.0133 & 0.4124 (3) & 0.3184 (7) & 0.5901 (2) & 2.7 (1) \\ C(54) & 0.1829 (10) & 1.0125 (8) & 0.2067 (10) & 4.0 (3) & N(12) & 0.8753 (3) & -0.1234 (8) & 0.8874 (2) & 3.5 (2) \\ C(55) & 0.1490 (10) & 0.9280 (9) & 0.1014 (10) & 4.5 (4) & N(13) & 0.8753 (3) & -0.1234 (8) & 0.8374 (3) & 3.5 (2) \\ C(55) & 0.1498 (10) & 0.8388 (9) & 0.0055 (9) & 3.7 (4) & N(21) & 0.9705 (3) & 0.0721 (8) & 0.3371 (3) & 3.3 (2) \\ C(64) & 0.6611 (10) & 0.5554 (10) & 0.6671 (10) & 7.1 (6) & N(12) & 0.9705 (3) & 0.0234 (9) & 0.921 (8) & 3.3 (7) \\ C(66) & 0.6620 (10) & 0.5737 (10) & 0.771 (0) & 7.1 (6) & N(12) & 0.301 (7) & 0.3512 (1) & 2.4 (1) \\ C(11) & 0.8323 (4) & 0.3512 (10) & 0.5794 (4) & 3.7 (2) \\ C(11) - S(1) & 2.200 (4) & C(2) - S(3) & 2.208 (3) & C(11) & 0.8271 (4) & -0.3551 (6) & 4.7 (8) \\ C(11) - S(1) & 2.200 (4) & C(2) - S(3) & 2.208 (3) & C(11) & 0.8371 (6) & 0.3551 (6) & 4.7 (8) \\ C(11) - S(1) & 2.200 (4) & C(2) - S(3) & 2.208 (3) & C(11) & 0.8373 (4) & 0.3931 (10) & 0.5750 (4) & 3.2 (2) \\ C(11) - S(1) & 2.200 (4) & C(2) - S(3) & 2.208 (3) & C(11) & 0.8373 (4) & 0.3931 (6) & 0.5550 (4) & 4.7 (8) \\ C(11) - S(1) & 2.200 (4) & C(2) - S(3) & 2.208 (3) & C(11) & 0.8373 (6) & 0.3551 (6) & 4.7 (8) \\ C(11) - S(1) & 2.200 (4) & C(2) - S(3) & 2.208 (3) & C(11) & 0.8373 (5) & 0.3751 (6) & 0.3551 (6) & 4.7 (8) \\ C(11) - S(1) & 2.200 (4) & C(2) - S(3) & 2.208 (3) & C(11) & 0.3751 (6) & 0.3551 (6) & 4.7 (6) $	C(34)	0.0338 (10)	0.4578 (9	0) 0.6664 (10)	4.5 (4)	O(11)	0.8219 (3)	0.1739 (6)	0.5832 (2)	3.1 (1)
$ \begin{array}{c} C_{130} & 0.166 (10) & 0.439 (f) & 0.004+ (f) & 24 (f) & 0.013 & 0.76^{+} (f) & -0.0432 (f) & 0.544 (f) & 0.542 (f) & 0.5454 (f) & 0.542 (f) & 0.5454 (f) & 0.545 (f) & 0.5454 (f) & 0.5454 (f) & 0.5454 (f) & 0.555 (f) & 0.744 (f) & 0.5454 (f) & 0.5554 (f) &$	C(35)	0.1095 (10)	0.4221 (8	3) 0.6047 (10)	3.5 (3)	O(12)	0.8689 (2)	-0.0098 (6)	0.6537 (2)	3.2 (1)
$ \begin{array}{c} 142, & 0.00691 (9), & 0.0489 (10), & 0.0489 (10), & 42 (4), & 0.(41), & 1.0383 (1), & 0.0484 (1), & 0.888 (1), & 0.888 (1), & 0.888 (1), & 0.1018 (10), & 0.888 (1), & 0.1018 (10), & 0.887 (2), & 3.1 (1), & 0.1018 (10), & 0.887 (2), & 3.1 (1), & 0.1018 (10), & 0.887 (2), & 3.1 (1), & 0.1018 (10), & 0.887 (2), & 3.1 (1), & 0.1018 (10), & 0.887 (2), & 3.1 (1), & 0.1018 (10), & 0.887 (2), & 3.1 (1), & 0.1018 (10), & 0.1018 (10), & 0.1018 (10), & 0.1018 (10), & 0.831 (1), & 0.313 (13), & 0.1124 (1), & 0.313 (13), & 0.3184 (7), & 0.5901 (2), & 2.7 (1), & 0.10218 (1), & 0.1025 (10), & 4.7 (4), & 0.1018 (1), & 0.833 (1), & 0.3184 (7), & 0.5901 (2), & 2.7 (1), & 0.1018 (10), & 0.025 (10), & 4.0 (3), & 0.112 (1), & 0.833 (1), & 0.3184 (7), & 0.5901 (2), & 2.7 (1), & 0.1011 (10), & 0.258 (0), & 0.1025 (10), & 0.1025 (10), & 0.1025 (10), & 0.1025 (10), & 0.1025 (10), & 0.1028 (10), & 0.0326 (1), & 0.0334 (10), & 0.331 (13), & 3.1 (2), & 0.1018 (10), & 0.3888 (0), & 0.0055 (0), & 3.7 (4), & N(12), & 0.9705 (3), & 0.0214 (10), & 0.4381 (10), & 0.355 (10), & 0.6574 (10), & 5.84 (4), & N(21), & 0.9705 (3), & 0.0214 (10), & 0.3331 (13), & 3.1 (2), & 0.1618 (1), & 0.3331 (1), & 0.3124 (1), & 0.3331 (1), & 0.3331 (1), & 3.1 (2), & 0.1618 (1), & 0.3331 (1), & 0.3331 (1), & 3.1 (2), & 0.1618 (1), & 0.3331 (1), & 0.3331 (1), & 3.1 (2), & 0.1618 (1), & 0.3331 (1), & $	C(36)	0.1661 (10)	0.4859 (/	0.6004(9)	2.9(3)	O(13)	0.7676 (3)	-0.0934 (6)	0.5941 (2)	3.4 (1)
$ \begin{array}{c} c_{143}^{$	C(42)	0.0041(9)	0.9409 (8	0.0302(9)	2.8 (5) 4 2 (4)	0(21)	1.0303 (3)	0.0432 (7)	0.8400 (2)	3.0(1) 3.9(1)
$\begin{array}{cccccc} -0.1831 (10) & 0.396 (e) & 0.403 (10) & 58 (e) & 0.31 & 0.4221 (3) & 0.178 (e) & 0.8495 (72) & 31 (1) \\ (C46) & -0.105 (10) & 0.857 (9) & 0.4215 (10) & 4.74 (4) & 0.33 & 0.4124 (3) & 0.3184 (7) & 0.8495 (2) & 3.3 (1) \\ (C3) & 0.271 (9) & 1.0025 (8) & 0.306 (10) & 4.03 (3) & 0.110 & 8(6) & 0.3077 (2) & 3.0 (1) \\ (C4) & 0.1829 (10) & 1.0125 (8) & 0.2067 (10) & 4.0 (3) & N(12) & 0.8752 (3) & -0.110 (7) & 0.6917 (2) & 2.6 (1) \\ (C5) & 0.1401 (10) & 0.2920 (9) & 0.1014 (10) & 4.54 (4) & N(13) & 0.0766 (3) & 0.3384 (7) & 0.8986 (2) & 0.3782 (3) & 0.3184 (7) & 0.8987 (3) & 0.3287 (3) & 0.3287 (3) & 0.3287 (3) & 0.3287 (3) & 0.3287 (3) & 0.3287 (3) & 0.3287 (3) & 0.3287 (3) & 0.3281 (3) & 3.3 (2) \\ (C6) & 0.4838 (10) & 0.5854 (10) & 0.6610 (10) & 5.8 (4) & N(22) & 1.1596 (3) & 0.3297 (7) & 0.4277 (3) & 3.0 (2) \\ (C4) & 0.6620 (10) & 0.6378 (10) & 0.6790 (10) & 6.4 (5) & N(32) & 0.4716 (3) & -0.3378 (8) & 0.3338 (8) & 0.3536 (3) & 2.28 (1) \\ (C46) & 0.6620 (10) & 0.6378 (10) & 0.6790 (10) & 6.4 (5) & N(32) & 0.4716 (3) & -0.3378 (10) & 0.5394 (4) & 3.0 (2) \\ (C11) & 0.8225 (4) & 0.3573 (4) & 0.3576 (1) & 0.5396 (4) & 0.7378 (4) & 0.3536 (3) & 2.28 (1) \\ (C11) & 0.8225 (4) & 0.3578 (4) & 0.3578 (1) & 0.5396 (4) & 7.0325 (2) & 2.0 (2) \\ (C11) & 0.8225 (4) & 0.5378 (10) & 0.5596 (4) & 4.3 (3) \\ (C11) & 0.8526 (4) & 0.3738 (10) & 0.5596 (4) & 4.3 (3) \\ (C11) & 0.8526 (4) & 0.3738 (10) & 0.5596 (4) & 4.3 (3) \\ (C11) & 0.5591 (4) & 0.5596 (4) & 2.213 (3) & C(2) & 0.277 (4) & 0.3573 (1) & 0.5558 (4) & 3.24 (2) \\ (C11) & 0.8526 (4) & 0.3738 (10) & 0.5596 (4) & 4.3 (3) & 2.20 (4) \\ (C12) & 0.8526 (4) & 0.3738 (10) & 0.5596 (4) & 4.3 (3) & 2.20 (2) \\ (C11) & 0.8516 (4) & 0.3578 (1) & 0.5558 (1) & 0.5578 (1) & 0.$	C(43) C(44)	-0.1576(10)	1.0294 (9	0.5034(10)	5.3 (4)	O(22)	1.1382 (3)	-0.2314(7)	0.8266 (2)	3.7(1)
$ \begin{array}{c} \hline C(4) \\ C(3) \\$	C(45)	-0.1831(10)	0.9396 (9) 0.4043 (10)	5.8 (4)	O(31)	0.4823 (3)	0.3745 (6)	0.8877 (2)	3.1(1)
$ \begin{array}{c} C(52) \\ C(53) \\ C(54) \\ C(54) \\ C(54) \\ C(54) \\ C(54) \\ C(55) \\ C(54) \\ C(54) \\ C(55) \\ C(56) \\ C(56) \\ C(56) \\ C(52) \\ C(56) \\ C(56) \\ C(57) \\ C(56) \\ C(57) \\ C(56) \\ C(57) $	C(46)	-0.1105 (10)	0.8557 (9	0.4215 (10)	4.7 (4)	O(32)	0.4850 (3)	0.1078 (6)	0.8495 (2)	3.3 (1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(52)	0.3274 (9)	0.9069 (7	7) 0.3178 (8)	2.4 (3)	O(33)	0.4124 (3)	0.3108 (6)	0.8037 (2)	3.0 (1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(53)	0.2771 (9)	1.0025 (8	3) 0.3161 (10)	3.6 (3)	N(11)	0.8331 (3)	0.3184 (7)	0.5901 (2)	2.7 (1)
$\begin{array}{cccccc} C(55) & 0.1401 (10) & 0.9280 (9) & 0.1014 (10) & 4-3 (4) & N(13) & 0.7076 (3) & -0.1204 (8) & 0.8346 (2) & 1.5 (2) \\ C(56) & 0.4824 (10) & 0.6129 (8) & 0.5580 (10) & 4.0 (3) & N(22) & 1.1596 (3) & 0.0721 (8) & 0.8327 (3) & 3.3 (2) \\ C(61) & 0.4824 (10) & 0.5284 (10) & 0.0610 (10) & 5.4 (4) & N(22) & 1.1596 (3) & 0.0724 (8) & 0.8324 (3) & 3.3 (2) \\ C(64) & 0.4831 (10) & 0.5931 (10) & 0.7167 (10) & 7.1 (5) & N(31) & 0.5124 (3) & -0.3397 (8) & 0.8331 (3) & 3.3 (2) \\ C(66) & 0.5602 (10) & 0.6672 (8) & 0.5734 (9) & 3.7 (3) & N(32) & 0.4716 (3) & -0.0359 (7) & 0.8427 (3) & 3.3 (2) \\ C(66) & 0.5965 (10) & 0.6672 (8) & 0.5734 (9) & 3.7 (3) & N(33) & 0.610 (3) & 0.3877 (8) & 0.7944 (2) & 2.9 (2) \\ C(111) & 0.8225 (4) & 0.3877 (8) & 0.7944 (2) & 2.9 (2) \\ C(112) & 0.8325 (5) & 0.6119 (10) & 0.5596 (4) & 4.3 (8) \\ C(114) & 0.8433 (5) & 0.5737 (10) & 0.5596 (4) & 4.3 (8) \\ C(114) & 0.8433 (5) & 0.5737 (10) & 0.5596 (4) & 4.3 (8) \\ C(114) & 0.8433 (5) & 0.5737 (10) & 0.5596 (4) & 4.3 (8) \\ C(115) & 0.8359 (4) & 0.3957 (10) & 0.5596 (4) & 4.3 (8) \\ C(1) - S(5) & 2.199 (3) & Co(2) - S(3) & 2.2016 (4) & C1121 & 0.3826 (4) & -0.2376 (10) & 0.5591 (3) & 3.3 (2) \\ C(0)S(6) & 2.208 (3) & Co(2) - S(4) & 2.213 (3) & C1120 & 0.388 (4) & -0.2357 (10) & 0.5590 (4) & 4.3 (2) \\ C(0)O(5) & 1.943 (8) & Co(2) - O(2) & 1.942 (7) & C1120 & 0.3928 (4) & -0.2056 (10) & 0.591 (3) & 3.3 (2) \\ C(0)O(5) & 1.943 (8) & Co(2) - O(2) & 1.942 (7) & C1130 & 0.6956 (4) & -0.095 (10) & 0.5979 (4) & 6.0 (3) \\ S(5) - CC20 & 1.73 (2) & S(3) - C(2) & 1.72 (2) & C1130 & 0.6956 (4) & -0.095 (10) & 0.5979 (4) & 6.0 (3) \\ S(5) - CC30 & 1.70 (1) & S(4) - C(42) & 1.73 (2) & C1130 & 0.6956 (4) & -0.056 (10) & 0.5979 (4) & 6.0 (3) \\ S(5) - CC66 & 1.70 (1) & S(4) - C(2) & 1.72 (2) & C1130 & 0.6956 (4) & -0.0571 (10) & 0.5699 (4) & 6.0 (3) \\ S(5) - CC66 & 1.70 (1) & S(4) - C(2) - C(3) & 1.021 (2) & 0.5975 (5) & -0.1337 (10) & 0.5699 (4) & 6.0 (3) \\ O(1) - N(1) & 1.34 (2) & O(2) - N(1) & 1.33 (2) & C(1130 & 0.6956 (5) & -0.3373 (10) & 0.5999 (4) &$	C(54)	0.1829 (10)	1.0125 (8	B) 0.2067 (10)	4.0 (3)	N(12)	0.8752 (3)	-0.1051 (7)	0.6917 (2)	2.6(1)
$ \begin{array}{c} C(56) & 0.1896 (10) & 0.8388 (9) & 0.103 (9) & 2.1(9) & N(21) & 0.9/16 (5) & 0.0024 (8) & 0.827 (5) & 3.5 (2) \\ C(62) & 0.4284 (10) & 0.66129 (8) & 0.5580 (10) & 0.5580 (10) & 1.56 (3) & 0.0374 (8) & 0.2371 (8) & 0.3331 (3) & 3.3 (2) \\ C(65) & 0.6620 (10) & 0.6378 (10) & 0.6610 (10) & 5.8 (4) & N(22) & 1.156 (3) & 0.0359 (7) & 0.8427 (3) & 3.0 (2) \\ C(65) & 0.6620 (10) & 0.6378 (10) & 0.6790 (10) & 6.4 (5) & N(32) & 0.4716 (3) & -0.0339 (7) & 0.8427 (3) & 3.0 (2) \\ C(66) & 0.5965 (10) & 0.6672 (8) & 0.5734 (9) & 3.7 (3) & N(33) & 0.3610 (3) & 0.3877 (8) & 0.7904 (2) & 2.9 (2) \\ C(111) & 0.8235 (4) & 0.3831 (9) & 0.6526 (3) & 2.16 (2) \\ C(112) & 0.8235 (4) & 0.3831 (9) & 0.6526 (3) & 2.26 (2) \\ C(113) & 0.8325 (5) & 0.5373 (10) & 0.5550 (4) & 4.9 (3) \\ C(11-S(1) & 2.200 (4) & Co(2)-8(3) & 2.208 (3) & C(112) & 0.8379 (4) & 0.3904 (10) & 0.5521 (3) & 4.2 (2) \\ C(11-S(5) & 2.199 (3) & Co(2)-8(3) & 2.208 (3) & C(122) & 0.8368 (4) & -0.305 (10) & 0.7560 (3) & 3.9 (2) \\ Co(1)-S(5) & 2.299 (3) & Co(2)-8(3) & 2.201 (4) & C(122) & 0.8368 (4) & -0.305 (10) & 0.7660 (3) & 3.9 (2) \\ Co(1)-S(6) & 2.203 (3) & Co(2)-8(3) & 2.213 (3) & C(124) & 0.9399 (4) & -0.624 (10) & 0.7590 (3) & 3.1 (2) \\ Co(1)-O(5) & 1.945 (8) & Co(2)-O(3) & 1.932 (7) & C(133) & 0.6638 (4) & -0.0502 (10) & 0.5791 (3) & 3.4 (2) \\ Co(1)-O(6) & 1.945 (8) & Co(2)-O(3) & 1.932 (7) & C(133) & 0.6638 (4) & -0.0502 (10) & 0.5918 (3) & 3.3 (2) \\ Co(1)-O(6) & 1.945 (8) & Co(2)-O(3) & 1.932 (7) & C(133) & 0.6632 (5) & -0.182 (10) & 0.5901 (4) & 6.3 (3) \\ C(1)-O(1) & 1.34 (2) & CO(2)-O(2) & 1.72 (2) & 0.6672 (5) & -0.182 (10) & 0.5901 (4) & 6.3 (3) \\ C(1)-O(1) & 1.34 (2) & CO(2)-O(2) & 1.72 (2) & 0.6672 (5) & -0.182 (10) & 0.5901 (4) & 6.3 (3) \\ C(1)-O(1) & 1.34 (2) & CO(2)-O(2) & 1.124 (1) & C(133) & 0.6632 (5) & -0.182 (10) & 0.5801 (4) & 6.3 (3) \\ C(1)-O(1) & 1.34 (2) & CO(2)-O(2) & 1.124 (2) & 0.0630 (5) & 0.136 (10) & 0.8198 (4) & 6.3 (3) \\ C(1)-O(1) & 1.34 (2) & CO(2)-O(2) & 810 (2) & 2.110 (2) & 0.0780 (1) & 0.9921 (3) & 3.5 (2) \\ C(1)-O(1) & 1.34 (2) $	C(55)	0.1401 (10)	0.9280 (9	9) 0.1014 (10)	4.5 (4)	N(13)	0.7076 (3)	-0.1204 (8)	0.5846 (2)	3.5 (2)
$ \begin{array}{c} C(b) \\ C(b) \\ C(c) \\ C$	C(56)	0.1898 (10)	0.8388 (9	(9) 0.1055(9) 0.5580(10)	3.7 (4) 4.0 (3)	N(21)	0.9705 (3)	0.0/21(8)	0.8327(3)	3.3(2) 3.7(2)
$ \begin{array}{c} C(6) & 0.6351 (10) & 0.2331 (10) & 0.7167 (10) & 71 (5) \\ C(66) & 0.6620 (10) & 0.6378 (10) & 0.5794 (10) & 4.459 \\ C(66) & 0.6620 (10) & 0.6378 (10) & 0.5794 (10) & 4.459 \\ C(66) & 0.5965 (10) & 0.6672 (8) & 0.5734 (9) & 3.7 (3) \\ C(11) & 0.8235 (4) & 0.3877 (8) & 0.7994 (2) & 2.9 (2) \\ C(111) & 0.8235 (4) & 0.3877 (8) & 0.7994 (2) & 2.9 (2) \\ C(112) & 0.8235 (4) & 0.3877 (8) & 0.7994 (2) & 2.4 (2) \\ C(113) & 0.8235 (4) & 0.3877 (8) & 0.7994 (2) & 2.4 (2) \\ C(113) & 0.8235 (4) & 0.3877 (8) & 0.7994 (2) & 2.4 (2) \\ C(113) & 0.8235 (4) & 0.3877 (8) & 0.7994 (2) & 2.4 (2) \\ C(113) & 0.8235 (4) & 0.3877 (8) & 0.7994 (2) & 2.4 (2) \\ C(113) & 0.8235 (4) & 0.3571 (10) & 0.5596 (4) & 4.7 (8) \\ C(114) & 0.0864 (5) & 0.3571 (10) & 0.5596 (4) & 4.7 (8) \\ C(115) & 0.839 (4) & 0.3994 (10) & 0.5551 (3) & 4.2 (2) \\ C(11-5(5) & 2.199 (3) & Co(2)-S(3) & 2.201 (4) \\ C(122) & 0.8368 (4) & -0.2376 (10) & 0.7550 (3) & 3.2 (2) \\ C(1)S(5) & 2.199 (3) & Co(2)-S(3) & 2.201 (4) \\ C(122) & 0.8368 (4) & -0.030 (10) & 0.7666 (3) & 3.9 (2) \\ C(1)O(5) & 1.943 (7) & Co(2)-O(3) & 1.932 (7) \\ C(130) & 0.6936 (4) & -0.0561 (0) & 0.702 (3) & 3.3 (2) \\ C(1)O(5) & 1.943 (7) & Co(2)-O(3) & 1.932 (7) \\ C(130) & 0.6936 (4) & -0.046 (10) & 0.5918 (3) & 3.3 (2) \\ C(1)O(5) & 1.943 (7) & Co(2)-O(3) & 1.932 (7) \\ C(130) & 0.6936 (4) & -0.0567 (10) & 0.580 (4) & 6.6 (3) \\ S(5)-C(52) & 1.73 (2) & S(3)-C(2) & 1.72 (2) & C(133) & 0.6936 (4) & -0.0567 (10) & 0.580 (4) & 6.6 (3) \\ S(5)-C(52) & 1.73 (2) & S(3)-C(2) & 1.72 (2) & C(133) & 0.6935 (5) & -0.2837 (10) & 0.5560 (4) & 4.5 (2) \\ C(1)O(1) & 1.34 (2) & O(2)N(3) & 1.33 (2) & C(211) & 0.9280 (4) & -0.077 (10) & 0.899 (3) & 3.5 (2) \\ C(5)N(51) & 1.38 (2) & O(3)N(31) & 1.33 (2) & C(211) & 0.9280 (4) & -0.077 (10) & 0.899 (3) & 3.5 (2) \\ C(5)N(51) & 1.38 (2) & O(3)N(31) & 1.33 (2) & C(211) & 0.9280 (4) & -0.077 (10) & 0.899 (3) & 3.5 (2) \\ C(5)N(51) & 1.38 (2) & O(3)N(31) & 1.33 (2) & C(211) & 0.9280 (4) & -0.077 (10) & 0.899 (3) & 3.5 (2) \\ C(6)N(61) & 1.36 (1) & O(0N-O(4) &$	C(62)	0.4234 (10)	0.0129 (0	0.5580(10)	5 8 (4)	N(22)	1.1390 (3)	0.0304 (9)	0.9218(3) 0.8331(3)	3.7(2) 3.3(2)
$ \begin{array}{c} C(65) & 0.6620 (10) & 0.6378 (10) & 0.6790 (10) & 6.4 (5) & V(22) & 4.71 (61) & -0.0359 (7) & 0.8427 (23) & 3.0 (21) \\ C(66) & 0.5965 (10) & 0.6672 (8) & 0.5734 (9) & 3.7 (3) & V(33) & 0.3610 (3) & -0.3877 (8) & 0.67904 (2) 2.9 (2) \\ C(112) & 0.8323 (44) & 0.5377 (8) & 0.6354 (4) & 3.9 (2) \\ C(112) & 0.8323 (44) & 0.5377 (10) & 0.6354 (4) & 3.9 (2) \\ C(112) & 0.8323 (44) & 0.5375 (10) & 0.6354 (4) & 4.9 (3) \\ C(114) & 0.8434 (3) & 0.5375 (10) & 0.5550 (4) & 4.2 (3) \\ C(11-8(1)) & 2.200 (4) & Co(2)-S(2) & 2.206 (3) & C(121) & 0.8273 (4) & -0.1356 (9) & 0.7170 (3) & 2.4 (2) \\ Co(1)-S(1) & 2.190 (3) & Co(2)-S(3) & 2.201 (4) & C(122) & 0.8286 (4) & -0.2376 (10) & 0.7550 (3) & 3.2 (2) \\ Co(1)-S(6) & 2.208 (3) & Co(2)-S(3) & 2.201 (4) & C(124) & 0.8286 (4) & -0.2356 (10) & 0.7660 (3) & 3.9 (2) \\ Co(1)-O(1) & 1.943 (8) & Co(2)-O(2) & 1.944 (7) & C(123) & 0.8286 (4) & -0.2305 (10) & 0.7660 (3) & 3.9 (2) \\ Co(1)-O(5) & 1.945 (7) & Co(2)-O(3) & 1.933 (7) & C(123) & 0.6386 (4) & -0.0350 (10) & 0.7660 (3) & 3.4 (2) \\ Co(1)-O(1) & 1.943 (8) & Co(2)-O(3) & 1.933 (7) & C(123) & 0.6387 (5) & -0.1663 (10) & 0.7021 (3) & 3.4 (2) \\ Co(1)-O(6) & 1.740 (1) & S(2)-C(22) & 1.72 (2) & C(133) & 0.6387 (5) & -0.1683 (10) & 0.5590 (4) & 6.03 \\ S(5)-C(25) & 1.73 (2) & S(3)-C(32) & 1.74 (1) & C(134) & 0.6335 (5) & -0.2867 (10) & 0.5560 (4) & 4.5 (2) \\ O(1)-N(1) & 1.34 (2) & O(2)-N(21) & 1.34 (1) & C(214) & 0.2867 (5) & -0.178 (10) & 0.5890 (4) & 6.03 \\ S(6)-C(66) & 1.70 (1) & S(4)-C(42) & 1.73 (2) & C(133) & 0.6393 (4) & -0.037 (10) & 0.5890 (4) & -0.017 (10) & 0.8499 (3) & 3.5 (2) \\ O(5)-N(51) & 1.38 (2) & O(3-N(31) & 1.35 (2) & C(213) & 0.8503 (5) & -0.3266 (10) & 0.5560 (4) & 4.5 (2) \\ O(5)-N(51) & 1.38 (2) & O(3-N(31) & 1.35 (2) & C(213) & 0.8503 (5) & -0.376 (10) & 0.5560 (4) & 4.5 (2) \\ O(5)-N(51) & 1.38 (2) & O(3-N(31) & 1.35 (2) & C(213) & 0.8593 (5) & -0.376 (10) & 0.5560 (4) & 4.5 (2) \\ O(5)-N(51) & 1.38 (2) & O(3-N(31) & 1.35 (2) & C(22) & 1.1202 (6) & 0.0176 (10) & 0.8999 (6) & 3.3 (2) \\ O(5)-N(51) & 1.38 (2) & O(3-N(31$	C(03) C(64)	0.4883 (10)	0.5931 (1	(0) 0.7167 (10) 0.7167 (10)	7.1 (5)	N(23)	0.5124(3)	0.3601 (7)	0.9325 (2)	2.8 (1)
$ \begin{array}{c} \hline C(66) & 0.5965 (10) & 0.6672 (8) & 0.5734 (9) & 3.7 (3) & (13) & (0.33) & (0.367) (8) & 0.7904 (2) & 2.9 (2) \\ C(112) & 0.8323 (4) & 0.5378 (10) & 0.6326 (3) & 2.8 (2) \\ C(113) & 0.8325 (4) & 0.5378 (10) & 0.6326 (4) & 3.9 (2) \\ C(113) & 0.8325 (4) & 0.5378 (10) & 0.6326 (4) & 4.9 (3) \\ C(113) & 0.8325 (4) & 0.5375 (10) & 0.5596 (4) & 4.9 (3) \\ C(113) & 0.8434 (5) & 0.5575 (10) & 0.5596 (4) & 4.9 (3) \\ C(11-S(1)) & 2.200 (4) & Co(2)-S(2) & 2.206 (3) & C(115) & 0.8379 (4) & 0.3594 (10) & 0.5521 (3) & 4.2 (2) \\ C(11-S(5)) & 2.199 (3) & Co(2)-S(3) & 2.200 (4) & C(122) & 0.8362 (4) & -0.2376 (10) & 0.7560 (3) & 3.9 (2) \\ Co(1)-S(5) & 2.208 (3) & Co(2)-S(3) & 2.201 (4) & C(122) & 0.8362 (4) & -0.2376 (10) & 0.7560 (3) & 3.9 (2) \\ Co(1)-C(1) & 1.943 (8) & Co(2)-O(2) & 1.944 (7) & C(124) & 0.9392 (4) & -0.3065 (10) & 0.7061 (3) & 3.9 (2) \\ Co(1)-O(6) & 1.943 (8) & Co(2)-O(3) & 1.932 (7) & C(133) & 0.6643 (4) & -0.0146 (10) & 0.5918 (3) & 3.3 (2) \\ Co(1)-O(6) & 1.943 (8) & Co(2)-O(3) & 1.732 (7) & C(133) & 0.6633 (4) & -0.0146 (10) & 0.5918 (3) & 3.3 (2) \\ Co(1)-O(6) & 1.943 (8) & Co(2)-O(3) & 1.74 (1) & C(132) & 0.6633 (4) & -0.0146 (10) & 0.5918 (4) & 5.4 (3) \\ S(5)-C(52) & 1.73 (2) & S(3)-C(32) & 1.74 (1) & C(134) & 0.6332 (5) & -0.1832 (10) & 0.5604 (4) & 5.4 (3) \\ S(5)-C(52) & 1.73 (2) & S(3)-C(32) & 1.74 (1) & C(134) & 0.6332 (5) & -0.1832 (10) & 0.5604 (4) & 5.4 (3) \\ S(6)-C(66) & 1.70 (1) & S(4)-C(42) & 1.73 (2) & C(133) & 0.6613 (6) & -0.0267 (10) & 0.5914 (4) & 5.4 (3) \\ S(6)-C(66) & 1.70 (1) & S(4)-C(42) & 1.73 (2) & C(133) & 0.6913 (5) & -0.2867 (10) & 0.5514 (4) & 5.4 (3) \\ S(6)-C(66) & 1.70 (1) & S(4)-C(42) & 1.73 (2) & C(134) & 0.6933 (5) & -0.1832 (10) & 0.5604 (4) & 5.4 (3) \\ S(6)-C(66) & 1.70 (1) & S(4)-C(2)-S(3) & 9.2 (1) & C(211) & 0.8573 (5) & -0.1832 (10) & 0.5806 (4) & 5.4 (3) \\ O(0)-N(61) & 1.38 (2) & O(3)-N(31) & 1.33 (2) & C(121) & 0.8573 (5) & -0.0177 (10) & 0.8499 (3) & 3.5 (2) \\ O(6)-N(61) & 1.38 (2) & O(3)-N(31) & 1.33 (2) & C(212) & 0.8573 (5) & -0.0177 (10) & 0.8499 (4) & 3.5 ($	C(65)	0.6620 (10)	0.6378 (1	0.6790 (10)	6.4 (5)	N(32)	0.4716 (3)	-0.0359(7)	0.8427 (3)	3.0 (2)
$ \begin{array}{c} C(111) \\ C(112) \\ C(112) \\ C(112) \\ C(113) \\ C(113) \\ C(113) \\ C(113) \\ C(113) \\ C(113) \\ C(114) \\ C(115) \\ C(11$	C(66)	0.5965 (10)	0.6672 (8	3) 0.5734 (9)	3.7 (3)	N(33)	0.3610 (3)	0.3877 (8)	0.7904 (2)	2.9 (2)
$\begin{array}{c} C(112) & 0.8323 (4) & 0.5378 (10) & 0.6334 (4) & 3.9 (2) \\ C(113) & 0.8525 (5) & 0.6119 (10) & 0.5591 (4) & 4.7 (8) \\ C(114) & 0.843 (5) & 0.5375 (10) & 0.5550 (4) & 4.9 (3) \\ C(115) & 0.8539 (4) & 0.3904 (10) & 0.5521 (3) & 4.2 (2) \\ C(1) & 0.211 (4) & -0.1356 (9) & 0.7170 (3) & 2.4 (2) \\ C(1) & 2.206 (3) & Co(2) & S(3) & 2.201 (4) & Co(123) & 0.8928 (4) & -0.0365 (10) & 0.7560 (3) & 3.9 (2) \\ C(1) & -0.056 (10) & 0.7560 (3) & 3.9 (2) \\ C(1) & -0.056 (10) & 0.7460 (3) & 3.9 (2) \\ C(1) & -0.051 (10) & 0.7480 (3) & 4.2 (2) \\ C(1) & -0.051 (10) & 0.7480 (3) & 2.201 (4) \\ C(1) & -0.051 (10) & 0.7480 (3) & 3.9 (2) \\ C(1) & -0.051 (10) & 0.7481 (3) & Co(2) & -0.03 \\ C(1) & -0.051 (10) & 0.7481 (3) & 0.7787 (4) & 4.6 (2) \\ C(1) & -0.051 (10) & 1.744 (1) & S(2) & -C(22) & 1.72 (2) \\ C(1) & -0.051 (10) & 1.744 (1) & S(2) & -C(22) & 1.744 (1) & C(113) & 0.6875 (5) & -0.1832 (10) & 0.5581 (4) & 5.4 (3) \\ S(5) & -C(52) & 1.73 (2) & S(3) & -C(32) & 1.744 (1) & C(133) & 0.8875 (5) & -0.2867 (10) & 0.5581 (4) & 5.4 (3) \\ S(6) & -C(66) & 1.70 (1) & S(4) & -C(42) & 1.73 (2) & C(123) & 0.6931 (5) & -0.2636 (10) & 0.5581 (4) & 5.4 (3) \\ O(1) & -N(11) & 1.34 (2) & O(2) & -N(21) & 1.344 (1) & C(211) & 0.5281 (5) & -0.178 (10) & 0.5499 (3) & 3.5 (2) \\ O(5) & -N(61) & 1.561 (0) & O(4) & -N(41) & 1.35 (2) & C(213) & 0.8533 (5) & -0.1386 (10) & 0.8130 (4) & 6.3 (3) \\ O(w) & -O(1m) & 2.79 (4) & C(22) & 1.1220 (4) & 0.0888 (10) & 0.9571 (4) & 6.5 (3) \\ O(w) & -O(1m) & 2.79 (4) & C(22) & 1.1230 (4) & 0.0888 (10) & 0.9571 (4) & 6.5 (3) \\ O(w) & -O(1m) & 2.79 (4) & C(22) & 1.1230 (4) & 0.0888 (10) & 0.9571 (4) & 6.5 (3) \\ O(1) & -C(1) & -S(6) & 9.2.1 (1) & S(2) & -C(2) & -S(3) & 9.2.0 (1) & -0.5831 (10) & 0.8937 (4) & 6.5 (3) \\ O(1) & -C(1) & -S(6) & 9.5.1 (1) & S(2) & -C(2) & -S(3) & 9.2.0 (1) & -0.5831 (10) & 0.8937 (4) & 6.5 (3) \\ O(1) & -C(1) & -S(6) & 9.5.1 (1) & S(2) & -C(2) & -O(3) & 9.3.0 (2) & C(223) & 1.1235 (4) & 0.0836 (10) & 0.9571 (4) & 6.5 (3) \\ O(1) & -C(1) & -S(6) & 9.5.1 (1) & S(2) & -C(2) & -O(3) & 9.3.0 (2) & C(2$						C(111)	0.8235 (4)	0.3851 (9)	0.6326 (3)	2.8 (2)
$\begin{array}{c} {\rm C(113)} & 0.3525 (5) & 0.6119 (10) & 0.3595 (4) & 4.7 (8) \\ {\rm C(114)} & 0.8643 (5) & 0.5375 (10) & 0.5550 (4) & 4.9 (3) \\ {\rm C(121)} & 0.8271 (4) & 0.3994 (10) & 0.5521 (3) & 4.2 (2) \\ {\rm C(1)-S(1)} & 2.206 (4) & {\rm C(2)-S(2)} & 2.208 (3) & {\rm C(122)} & 0.8378 (4) & -0.3356 (10) & 0.7550 (3) & 3.2 (2) \\ {\rm C(1)-S(1)} & 2.208 (3) & {\rm C(2)-S(3)} & 2.201 (4) & {\rm C(12)} & 0.8398 (4) & -0.3056 (10) & 0.7660 (3) & 3.9 (2) \\ {\rm C(1)-S(1)} & 2.208 (3) & {\rm C(2)-S(4)} & 2.213 (3) & {\rm C(124)} & 0.9399 (4) & -0.2024 (10) & 0.7402 (3) & 4.3 (2) \\ {\rm C(1)-O(5)} & 1.945 (7) & {\rm C(2)-O(3)} & 1.942 (7) & {\rm C(125)} & 0.9311 (4) & -0.1665 (10) & 0.7021 (3) & 3.4 (2) \\ {\rm C(1)-O(6)} & 1.945 (7) & {\rm C(2)-O(3)} & 1.942 (7) & {\rm C(133)} & 0.6688 (4) & -0.0302 (10) & 0.5797 (4) & 4.5 (2) \\ {\rm C(1)-O(6)} & 1.945 (7) & {\rm C(2)-C(22)} & 1.72 (2) & {\rm C(133)} & 0.6352 (5) & -0.1832 (10) & 0.5694 (4) & 6.0 (3) \\ {\rm S(5)-C(66)} & 1.70 (1) & {\rm S(4)-C(42)} & 1.73 (2) & {\rm C(133)} & 0.6352 (5) & -0.2867 (10) & 0.5541 (4) & 5.4 (3) \\ {\rm C(5)-N(51)} & 1.33 (2) & {\rm O(2)-N(11)} & 1.34 (1) & {\rm C(211)} & 0.9230 (4) & -0.0177 (10) & 0.8499 (3) & 3.5 (2) \\ {\rm O(6)-N(61)} & 1.36 (1) & {\rm O(4)-N(41)} & 1.35 (2) & {\rm C(213)} & 0.8503 (5) & 0.1736 (10) & 0.5818 (4) & 4.6 (2) \\ {\rm O(6)-N(61)} & 1.36 (1) & {\rm O(4)-N(41)} & 1.35 (2) & {\rm C(213)} & 0.8503 (5) & 0.1386 (10) & 0.8130 (4) & 6.3 (3) \\ {\rm O(w)- O(lm)} & 2.79 (4) & & & & & & & & & & & & & & & & & & &$						C(112)	0.8323 (4)	0.5378 (10)	0.6354 (4)	3.9 (2)
Table 2. Selected geometric parameters (Å, °) for (1) C(114) 0.8839 (4) 0.3331 (10) 0.5331 (10) <td></td> <td></td> <td></td> <td></td> <td></td> <td>C(113)</td> <td>0.8525 (5)</td> <td>0.6119 (10)</td> <td>0.5969 (4)</td> <td>4.7(8)</td>						C(113)	0.8525 (5)	0.6119 (10)	0.5969 (4)	4.7(8)
$ \begin{array}{c} \mbox{Label 2} Selected geometric parameters (x, -) for (1) \\ \mbox{Coll} 1 \\ \mbox{Coll} 2 \\ \mbox{Coll} 3 \\ \mbox{Coll} 2 \\ \mbox$		0 6			(1)	C(114)	0.8643 (5)	0.5375 (10)	0.5550 (4)	4.9 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Table	e 2. Selected	a geometric	c parameters (A,	-)]0/(1)	C(113)	0.8339 (4)	-0.1356 (9)	0.3321(3) 0.7170(3)	$\frac{4.2}{2.4}$ (2)
$ \begin{array}{c} Cot1 & -S(5) & 2.199 (3) & Cot2 & -S(3) & 2.201 (4) & Cot2 & 0.992 (4) & -0.305 (10) & 0.7660 (3) & 3.9 (2) \\ Cot1 & -S(6) & 2.208 (3) & Cot2 & -S(4) & 2.213 (3) & C(124) & 0.9399 (4) & -0.2624 (10) & 0.7402 (3) & 4.3 (2) \\ Cot1 & -O(1) & 1.943 (8) & Cot2 & -O(2) & 1.944 (7) & C(125) & 0.9311 (4) & -0.1665 (10) & 0.7402 (3) & 4.3 (2) \\ Cot1 & -O(6) & 1.943 (8) & Cot2 & -O(4) & 1.945 (7) & C(131) & 0.6648 (4) & -0.0146 (10) & 0.5918 (3) & 3.3 (2) \\ S(1) & -C(16) & 1.74 (1) & S(2) & -C(22) & 1.72 (2) & C(133) & 0.6638 (4) & -0.0502 (10) & 0.5599 (4) & 6.6 (3) \\ S(5) & -C(52) & 1.73 (2) & S(3) & -C(32) & 1.74 (1) & C(1134) & 0.6325 (5) & -0.1832 (10) & 0.5609 (4) & 6.0 (3) \\ S(6) & -C(66) & 1.70 (1) & S(4) & -C(42) & 1.73 (2) & C(133) & 0.6913 (5) & -0.2563 (10) & 0.5609 (4) & 4.5 (2) \\ O(1) & -N(11) & 1.34 (2) & O(2) - N(11) & 1.34 (1) & C(211) & 0.9280 (4) & -0.0177 (10) & 0.8499 (3) & 3.5 (2) \\ O(5) & -N(51) & 1.38 (2) & O(3) - N(31) & 1.33 (2) & C(213) & 0.8503 (5) & 0.1386 (10) & 0.8130 (4) & 6.3 (3) \\ O(w) & -O(ww) & 2.67 (3) & O(w) & -O(4) & 2.88 (1) & C(214) & 0.8935 (5) & 0.1386 (10) & 0.8130 (4) & 6.3 (3) \\ O(w) & -O(1m) & 2.79 (4) & C223 (1) & C223 (1) & 0.2935 (5) & 0.1951 (10) & 0.896 (4) & 5.0 (3) \\ S(1) & -Co(1) - S(6) & 92.2 (1) & S(2) - Co(2) - S(3) & 92.0 (1) & C(223) & 1.2076 (6) & 0.2171 (10) & 0.9935 (4) & 6.7 (3) \\ S(1) & -Co(1) - S(6) & 92.2 (1) & S(2) - Co(2) - S(3) & 92.0 (1) & C(223) & 1.2076 (6) & 0.2171 (10) & 0.9935 (4) & 6.5 (3) \\ S(1) & -Co(1) - O(6) & 17.5 (3) & S(2) - Co(2) - O(3) & 93.9 (2) & C(224) & 1.2427 (5) & 0.1748 (10) & 0.9837 (4) & 6.5 (3) \\ S(1) - Co(1) - O(6) & 17.5 (3) & S(2) - Co(2) - O(3) & 93.9 (2) & C(223) & 1.2085 (4) & -0.4329 (10) & 0.8784 (4) & 5.0 (3) \\ S(1) - Co(1) - O(6) & 17.5 (3) & S(2) - Co(2) - O(3) & 93.9 (2) & C(223) & 1.2085 (4) & -0.4329 (10) & 0.8784 (4) & 5.2 (3) \\ S(5) - Co(1) - O(6) & 17.5 (3) & S(2) - Co(2) - O(3) & 93.9 (2) & C(223) & 1.2085 (4) & -0.4329 (10) & 0.8784 (3) & 3.7 (2) \\ S(5) - Co(1) - O(6) & 17.5 (3) & S(2) - Co(2) - O(3)$	Co(1)—S	(1)	2.200 (4)	Co(2)—S(2)	2.208 (3)	C(121)	0.8368 (4)	-0.2376 (10)	0.7550 (3)	3.2 (2)
$ \begin{array}{c} Ca(1)-S(6) & 2.208 (3) \\ Ca(2)-S(6) & Ca(2)-S(4) \\ Ca(1)-O(5) & 1.943 (8) \\ Ca(2)-O(2) & 1.944 (7) \\ Ca(1)-O(6) & 1.943 (8) \\ Ca(2)-O(3) \\ Ca(1)-O(6) \\ 1.943 (8) \\ Ca(2)-O(3) \\ Ca(1)-O(6) \\ 1.943 (8) \\ Ca(2)-O(4) \\ 1.945 (7) \\ Ca(2)-O(3) \\ 1.92 (7) \\ Ca(131) \\ 0.6648 (4) \\ -0.0166 (10) \\ 0.0502 (10) \\ 0.0577 (4) \\ 4.6 (2) \\ S(5)-C(16) \\ 1.74 (1) \\ S(2)-C(22) \\ 1.72 (2) \\ Ca(133) \\ 0.6875 (5) \\ -0.2867 (10) \\ 0.5569 (4) \\ 0.556 (10) \\ 0.5569 (4) \\ 6.033 \\ (5)-C(56) \\ 1.70 (1) \\ S(4)-C(42) \\ 1.73 (2) \\ S(3)-C(56) \\ 1.70 (1) \\ S(4)-C(42) \\ 1.73 (2) \\ Ca(131) \\ 0.6325 (5) \\ -0.2867 (10) \\ 0.5563 (10) \\ 0.5569 (4) \\ 4.5 (2) \\ 0.0556 (10) \\ 0.5560 (4) \\ 4.5 (2) \\ 0.0556 (10) \\ 0.5560 (4) \\ 4.5 (2) \\ 0.0556 (10) \\ 0.5560 (4) \\ 4.5 (2) \\ 0.0556 (10) \\ 0.5560 (4) \\ 4.5 (2) \\ 0.0556 (10) \\ 0.5560 (4) \\ 4.5 (2) \\ 0.0556 (10) \\ 0.5560 (4) \\ 4.5 (2) \\ 0.0556 (10) \\ 0.5560 (4) \\ 4.5 (2) \\ 0.0556 (10) \\ 0.5560 (4) \\ 4.5 (2) \\ 0.0556 (10) \\ 0.5560 (4) \\ 4.5 (2) \\ 0.0556 (10) \\ 0.5560 (4) \\ 4.5 (2) \\ 0.0556 (10) \\ 0.5560 (4) \\ 4.5 (2) \\ 0.0576 (4) \\ 4.5 (2) \\ 0.0576 (4) \\ 4.5 (2) \\ 0.0577 (4) \\ 4.5 (2) \\ 0.0578 (5) \\ 0.0176 (10) \\ 0.8898 (4) \\ 4.6 (2) \\ 0.0580 (10) \\ 0.880 (4) \\ 0.0808 (10) \\ 0.980 (4) \\ 4.5 (2) \\ 0.0808 (10) \\ 0.980 (4) \\ 0.980 (10) \\ 0.980 (4) \\ 0.993 (4) \\ 4.5 (2) \\ 0.0808 (10) \\ 0.993 (4) \\ 4.5 (2) \\ 0.0808 (10) \\ 0.993 (4) \\ 4.5 (3) \\ 0.0808 (10) \\ 0.993 (4) \\ 4.5 (3) \\ 0.0808 (10) \\ 0.993 (4) \\ 4.5 (3) \\ 0.0808 (10) \\ 0.993 (4) \\ 4.5 (3) \\ 0.0808 (10) \\ 0.993 (4) \\ 4.5 (3) \\ 0.0808 (10) \\ 0.993 (4) \\ 4.5 (3) \\ 0.0808 (10) \\ 0.993 (4) \\ 0.0808 (10) \\ 0.993 (4) \\ 0.0808 (10) \\ 0.993 (4) \\ 0.0808 (10) \\ 0.993 (4) \\ 0.0808 (10) \\ 0.993 (4) \\ 0.0808 (10) \\ 0.993 (4) \\ 0.0808 (10) \\ 0.993 (4) \\ 0.0808 (10) \\ 0.993 (4) \\ 0.0808 (10) \\ 0.993 (4) \\ 0.0808 (10) \\ 0.993 (4) \\ 0.0808 (10) \\ 0.993 (4) \\ 0.0808 (10) \\ 0.993 (4) \\ 0.0808 (10) \\ 0.993 (4) \\ 0.0808 (10) \\ 0.993 (4) \\ 0.0808 (10) \\ 0.993 (4) \\ 0.0808 (10) \\ 0.993 (4) \\ 0.0808 (10) \\ 0.993 (4) \\ 0.0808 (10) \\ 0.993 (4) \\ 0.0808 (10) \\ 0.993 (4) \\ 0.$	Co(1)—S	(5)	2.199 (3)	Co(2)—S(3)	2.201 (4)	C(123)	0.8928 (4)	-0.3005 (10)	0.7660 (3)	3.9 (2)
$ \begin{array}{c} Cot(1) = O(1) \\ Cot(1) = O(1) \\ Cot(1) = O(5) \\ 1.945 (7) \\ Cot(2) = O(3) \\ Cot(2) = O(3) \\ 1.932 (7) \\ Cr(13) \\ O(1) = O(6) \\ 1.943 (8) \\ Cot(2) = O(4) \\ 1.945 (7) \\ Cr(13) \\ O(1) = O(6) \\ 1.943 (8) \\ Cot(2) = O(4) \\ 1.945 (7) \\ Cr(13) \\ O(1) = O(6) \\ 1.74 (1) \\ S(2) = C(22) \\ 1.72 (2) \\ Cr(13) \\ O(1) = O(6) \\ 1.74 (1) \\ S(2) = C(22) \\ 1.72 (2) \\ Cr(13) \\ O(2) = O(25) \\ (1) \\ S(5) = C(52) \\ 1.73 (2) \\ S(3) = C(52) \\ 1.73 (2) \\ S(4) = C(4) \\ 1.73 (2) \\ O(2) = N(51) \\ 1.38 (2) \\ O(2) = N(51) \\ 1.38 (2) \\ O(2) = N(51) \\ 1.38 (2) \\ O(2) = N(31) \\ 1.38 (2) \\ O(3) = N(31) \\ 1.38 (2) \\ 0.38$	Co(1)—S	(6)	2.208 (3)	Co(2) - S(4)	2.213 (3)	C(124)	0.9399 (4)	-0.2624 (10)	0.7402 (3)	4.3 (2)
$ \begin{array}{c} Cot1-O(5) & 1.943 (8) & Cot2-O(3) & 1.925 (7) & C(132) & 0.6648 (4) & -0.0146 (10) & 0.5918 (3) & 3.5 (2) \\ S(1)-C(16) & 1.74 (1) & S(2)-C(22) & 1.72 (2) & C(133) & 0.5875 (5) & -0.1832 (10) & 0.5609 (4) & 6.0 (3) \\ S(5)-C(52) & 1.73 (2) & S(3)-C(32) & 1.74 (1) & C(1134) & 0.6325 (5) & -0.2867 (10) & 0.5541 (4) & 5.4 (3) \\ S(6)-C(66) & 1.70 (1) & S(4)-C(42) & 1.73 (2) & C(135) & 0.6913 (5) & -0.2563 (10) & 0.5609 (4) & 4.5 (2) \\ O(1)-N(11) & 1.34 (2) & O(2)-N(21) & 1.34 (1) & C(211) & 0.9280 (4) & -0.0177 (10) & 0.8499 (3) & 3.5 (2) \\ O(5)-N(51) & 1.38 (2) & O(3)-N(31) & 1.33 (2) & C(212) & 0.8672 (5) & 0.0176 (10) & 0.8398 (4) & 4.6 (2) \\ O(6)-N(61) & 1.36 (1) & O(4)-N(41) & 1.35 (2) & C(213) & 0.8503 (5) & 0.1386 (10) & 0.8130 (4) & 6.3 (3) \\ O(w) \cdots O(ww) & 2.67 (3) & O(w) \cdots O(4) & 2.88 (1) & C(214) & 0.8945 (5) & 0.2289 (10) & 0.9770 (4) & 6.0 (3) \\ O(w) \cdots O(1m) & 2.79 (4) & C(221) & 1.1230 (4) & 0.0808 (10) & 0.9556 (3) & 3.3 (2) \\ S(1)-Co(1)-S(5) & 90.5 (1) & S(2)-Co(2)-S(3) & 92.0 (1) & C(222) & 1.1495 (5) & 0.174 (10) & 0.9925 (4) & 6.7 (3) \\ S(1)-Co(1)-O(5) & 92.6 (1) & S(2)-Co(2)-O(2) & 87.0 (2) & C(225) & 1.2185 (4) & 0.0826 (10) & 0.9281 (3) & 3.5 (2) \\ S(1)-Co(1)-O(5) & 92.6 (2) & S(2)-Co(2)-O(2) & 87.0 (2) & C(225) & 1.2185 (4) & 0.0826 (10) & 0.9287 (4) & 6.5 (3) \\ S(1)-Co(1)-O(5) & 92.6 (2) & S(2)-Co(2)-O(4) & 97.0 (2) & C(225) & 1.2185 (4) & 0.0826 (10) & 0.9287 (4) & 5.2 (3) \\ S(5)-Co(1)-O(5) & 91.1 (1) & S(3)-Co(2)-O(4) & 91.1 (2) & C(233) & 1.1115 (6) & -0.6614 (10) & 0.8415 (4) & 5.9 (3) \\ S(5)-Co(1)-O(5) & 91.2 (2) & S(3)-Co(2)-O(4) & 91.1 (2) & C(233) & 1.1023 (5) & -0.5819 (10) & 0.8784 (3) & 3.7 (2) \\ S(5)-Co(1)-O(6) & 91.7 (2) & S(4)-Co(2)-O(3) & 173.7 (2) & C(312) & 0.5246 (5) & 0.2609 (10) & 0.9966 (4) & 5.2 (3) \\ S(5)-Co(1)-O(6) & 87.7 (2) & S(4)-Co(2)-O(3) & 173.7 (2) & C(312) & 0.5246 (5) & 0.2609 (10) & 0.9966 (4) & 5.2 (3) \\ S(5)-Co(1)-O(6) & 87.7 (2) & S(4)-Co(2)-O(3) & 173.7 (2) & C(312) & 0.5246 (5) & 0.2609 (10) & 0.9966 (4) & 5.2 (3) \\ S(6)-Co(1)-O(6) & 87.7 (4) & O($	$C_0(1) - C_0(1)$	D (1)	1.943 (8)	$C_0(2) = O(2)$	1.944 (7)	C(125)	0.9311 (4)	-0.1665 (10)	0.7021 (3)	3.4 (2)
$\begin{array}{c} Cu(1) = 0.00 & 1.74 (1) & S(2) = C(2) & 1.72 (2) & 0.6036 (4) & -0.030 (10) & 0.379 (4) & 4.8 (2) \\ S(3) = C(52) & 1.73 (2) & S(3) = C(32) & 1.74 (1) & C(133) & 0.6325 (5) & -0.1832 (10) & 0.5609 (4) & 6.0 (3) \\ S(5) = C(56) & 1.70 (1) & S(4) = C(42) & 1.73 (2) & C(133) & 0.6325 (5) & -0.2867 (10) & 0.5541 (4) & 5.4 (3) \\ S(6) = C(66) & 1.70 (1) & S(4) = C(42) & 1.73 (2) & 0.6913 (5) & -0.2563 (10) & 0.560 (4) & 4.5 (2) \\ O(1) = N(11) & 1.34 (2) & O(2) = N(21) & 1.34 (1) & C(211) & 0.9280 (4) & -0.0177 (10) & 0.8499 (3) & 3.5 (2) \\ O(6) = N(61) & 1.36 (1) & O(4) = N(41) & 1.33 (2) & C(212) & 0.8672 (5) & 0.0176 (10) & 0.8398 (4) & 4.6 (2) \\ O(6) = N(61) & 1.36 (1) & O(4) = N(41) & 1.33 (2) & C(213) & 0.8503 (5) & 0.1386 (10) & 0.8130 (4) & 6.3 (3) \\ O(w) = O(1ww) & 2.67 (3) & O(w) = O(4) & 2.88 (1) & C(214) & 0.8945 (5) & 0.2289 (10) & 0.7970 (4) & 6.0 (3) \\ O(w) = O(6) & 2.88 (1) & O(ww) = O(5) & 2.95 (3) & C(215) & 0.9533 (5) & 0.1951 (10) & 0.8966 (4) & 5.0 (3) \\ O(w) = O(1) = S(5) & 90.5 (1) & S(2) = Co(2) = S(3) & 92.0 (1) & C(223) & 1.2076 (6) & 0.2171 (10) & 0.9950 (3) & 3.3 (2) \\ S(1) = Co(1) = S(6) & 92.2 (1) & S(2) = Co(2) = O(3) & 93.9 (2) & C(223) & 1.2076 (6) & 0.2171 (10) & 0.9951 (4) & 6.7 (3) \\ S(1) = Co(1) = O(6) & 175.5 (3) & S(2) = Co(2) = O(3) & 93.9 (2) & C(223) & 1.2076 (6) & 0.2171 (10) & 0.9951 (4) & 6.7 (3) \\ S(1) = Co(1) = O(6) & 175.5 (3) & S(2) = Co(2) = O(3) & 93.9 (2) & C(223) & 1.2076 (6) & 0.2171 (10) & 0.9951 (4) & 6.7 (3) \\ S(5) = Co(1) = O(6) & 175.5 (3) & S(2) = Co(2) = O(3) & 93.9 (2) & C(223) & 1.2076 (6) & 0.2171 (10) & 0.9951 (4) & 6.7 (3) \\ S(5) = Co(1) = O(6) & 175.5 (3) & S(2) = Co(2) = O(3) & 93.9 (2) & C(223) & 1.2076 (6) & 0.2171 (10) & 0.9951 (4) & 6.7 (3) \\ S(5) = Co(1) = O(6) & 175.5 (3) & S(2) = Co(2) = O(3) & 93.9 (2) & C(223) & 1.2076 (6) & 0.2171 (10) & 0.9951 (4) & 6.5 (3) \\ S(5) = Co(1) = O(6) & 174.9 (3) & S(3) = Co(2) = O(3) & 93.9 (2) & C(223) & 1.2076 (6) & 0.2171 (10) & 0.9951 (4) & 6.7 (3) \\ S(5) = Co(1) = O(6) & 174.9 (3) & S(3) = Co(2) = O(3)$	$C_0(1) = C_0(1) = C$)(5))(6)	1.943 (7)	$C_0(2) = O(3)$	1.945 (7)	C(131)	0.6648 (4)	-0.0146 (10)	0.5918 (3)	3.3(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		16)	1.943(0)	S(2) - C(22)	1.72 (2)	C(132)	0.6036 (4)	-0.0502(10)	0.5797 (4)	4.0(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S(5) - C(52)	1.73 (2)	S(3) - C(32)	1.74 (1)	C(133)	0.5875 (5)	-0.1852(10) -0.2867(10)	0.5609(4)	5.4 (3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S(6)—C(66)	1.70 (1)	S(4)—C(42)	1.73 (2)	C(135)	0.6913 (5)	-0.2563(10)	0.5660 (4)	4.5 (2)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O(1)N	(11)	1.34 (2)	O(2)—N(21)	1.34 (1)	C(211)	0.9280 (4)	-0.0177 (10)	0.8499 (3)	3.5 (2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(5)—N	(51)	1.38 (2)	O(3)—N(31)	1.33 (2)	C(212)	0.8672 (5)	0.0176 (10)	0.8398 (4)	4.6 (2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(6)—N	(61)	1.36 (1)	O(4) - N(41)	1.35 (2)	C(213)	0.8503 (5)	0.1386 (10)	0.8130 (4)	6.3 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O(w) \cdots O(w) \cdots O(w)$	U(ww)	2.67 (3)	$O(w) \cdots O(4)$	2.88 (1)	C(214)	0.8945 (5)	0.2289 (10)	0.7970 (4)	6.0 (3)
$\begin{array}{c} C(21) & (1,23) & (2,1) $	$O(w) \cdots O(w)$	J(0) .O(1m)	2.00(1)	$O(ww) \cdots O(J)$	2.95 (5)	C(215)	0.9535 (5)	0.1951 (10)	0.8066 (4)	3.0(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(ww).	•0(1m)	2.75 (4)		02.0 (1)	C(221)	1.1230 (4)	0.0808 (10)	0.9300 (3)	3.3(2) 45(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(1)—Co	S(1) = S(5)	90.5 (1)	S(2) = Co(2) = S(3) S(2) = Co(2) = S(4)	92.0(1)	C(222)	1.1495 (5)	0.2171 (10)	0.9935 (4)	6.7 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$S(1) \rightarrow C(1)$	S(1) = S(0)	92.2 (1)	S(2) = CO(2) = S(4) S(2) = CO(2) = O(2)	87.0 (2)	C(223)	1.2427 (5)	0.1748 (10)	0.9587 (4)	6.5 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(1) = 0(1)	92.6 (2)	S(2) - Co(2) - O(3)	93.9 (2)	C(225)	1.2185 (4)	0.0826 (10)	0.9231 (3)	5.2 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$S(1) \rightarrow C(1)$	(1) - O(6)	175.5 (3)	S(2)-Co(2)-O(4)	174.9 (3)	C(231)	1.0859 (4)	-0.4329 (10)	0.8784 (3)	3.7 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(5)—Co	o(1)—S(6)	91.1 (1)	S(3)—Co(2)—S(4)	91.1 (1)	C(232)	1.1023 (5)	-0.5819 (10)	0.8823 (4)	5.1 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(5)—Co	o(1)O(1)	176.0 (2)	S(3)-Co(2)-O(2)	176.8 (2)	C(233)	1.1115 (6)	-0.6614 (10)	0.8415 (4)	5.9 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S(5)—Co	o(1)—O(5)	87.2 (2)	S(3)—Co(2)—O(3)	87.4 (3)	C(234)	1.1072 (5)	0.5943 (10)	0.7900 (4)	3.2(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S(5)—Co	o(1)O(6)	94.0 (2)	S(3) - Co(2) - O(4)	93.1 (2)	C(235)	1.0909 (5)	-0.4509(10)	0.7920(4)	$\frac{4.3}{32}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(6)—C	O(1) - O(1)	92.6 (2)	S(4) = Co(2) = O(2) S(4) = Co(2) = O(2)	92.1 (2) 173 7 (2)	C(312)	0.5246(5)	0.2603 (10)	1.0110 (3)	4.3 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(6)-C	u(1) = 0(3)	1 /4.7 (3) 87 7 (7)	S(4) = Co(2) = O(3)	87.6 (2)	C(313)	0.5734 (5)	0.3490 (10)	1.0241 (3)	4.7 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(1)	(1) - O(5)	89.2 (4)	O(2) - Co(2) - O(3)	89.6 (3)	C(314)	0.5920 (4)	0.4457 (10)	0.9897 (4)	4.3 (2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0(1)-C	o(1)O(6)	87.8 (3)	O(2)-Co(2)-O(4)	88.0 (3)	C(315)	0.5612 (4)	0.4483 (10)	0.9443 (3)	3.6 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(5)—C	o(1)O(6)	87.7 (4)	O(3)-Co(2)-O(4)	86.3 (3)	C(321)	0.5194 (4)	-0.1257 (10)	0.8363 (4)	4.0 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co(1)	S(1)—C(16)	96.7 (4)	Co(2)—S(2)—C(22)	96.6 (4)	C(322)	0.5092 (5)	-0.2724 (10)	0.8299 (4)	5.5 (5) 5.7 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co(1)	S(5)—C(52)	96.2 (4)	Co(2)— $S(3)$ — $C(32)$	96.2 (4)	C(323)	0.4508 (5)	-0.3273(10) -0.2354(10)	0.8303 (4)	J.2 (J) 4 5 (J)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co(1)	S(6)—C(66)	97.1 (4)	Co(2) = S(4) = C(42)	95.7 (4) 116.0 (6)	C(324) C(325)	0.4037 (3)	-0.0852 (10)	0.8421 (3)	3.1 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{\alpha}(1)$	O(1) - N(11) O(5) - N(51)	110.3 (0)	$C_0(2) = O(2) = N(21)$ $C_0(2) = O(3) = N(31)$	118.1 (6)	C(331)	0.3229 (4)	0.4249 (10)	0.8243 (3)	3.1 (2)
	Co(1)	O(6) - N(61)	115.7 (6)	Co(2) - O(4) - N(41)	115.2 (6)	C(332)	0.2719 (4)	0.5092 (10)	0.8083 (4)	4.4 (2)

C(333)	0.2614 (5)	0.5508	(10)	0.7609 (4)	5.8 (3)
C(334)	0.3008 (5)	0.5101	(10)	0.7277 (4)	5.6 (3)
C(335)	0.3514 (4)	0.4297	(10)	0.7434 (3)	4.0 (2)
O(<i>m</i>)	1.2312 (5)	-0.2829	(10)	0.8951 (4)	12.4 (3)
C(<i>m</i>)	1.2496 (9)	-0.3262	(3)	0.9458 (7)	16.2 (7)
					• • •
		_		0	
Table	4. Selected	d geometr	ic para	meters (A, °)) for (2)
Co(1)—S(11)	2.214 (2)	S(21)-	-C(211)	1.728 (8)
Co(1)—S(12)	2.203 (2)	S(22)–	-C(221)	1.724 (8)
Co(1)—S(13)	2.202 (2)	S(23)-	-C(231)	1.731 (9)
Co(1)—O((11)	1.976 (5)	O(21)-	—N(21)	1.336 (8)
Co(1)—O((12)	1.954 (5)	O(22)-	—N(22)	1.360 (8)
Co(1)—O((13)	1.951 (6)	O(23)-	—N(23)	1.352 (8)
S(11)—C(111)	1.710 (8)	Co(3)-	–S(31)	2.205 (2)
S(12)—C(121)	1.735 (7)	Co(3)-	–S(32)	2.206 (2)
S(13)—C(131)	1.724 (8)	Co(3)-	–S(33)	2.207 (2)
O(11)—N((11)	1.348 (8)	Co(3)-	O(31)	1.945 (6)
O(12)—N((12)	1.357 (8)	Co(3)-	O(32)	1.927 (6)
O(13)—N((13)	1.343 (8)	Co(3)-	-O(33)	1.943 (5)
$O(22) \cdot \cdot \cdot C$	$\mathcal{P}(m)$	2.91 (1)	S(31)–	-C(311)	1.734 (8)
Co(2)—S(21)	2.190 (2)	S(32)–	-C(325)	1.728 (9)
Co(2)—S(22)	2.204 (2)	S(33)–	-C(331)	1.718 (9)
Co(2)—S(23)	2.215 (2)	O(31)-	—N(31)	1.349 (7)
Co(2)—O((21)	1.938 (5)	O(32)-	—N(32)	1.348 (7)
Co(2)O((22)	1.967 (5)	O(33)-	—N(33)	1.348 (7)
Co(2)O((23)	1.946 (5)			
S(11)—Co	(1)—O(11)	87.0 (2)	Co(2)-	-\$(23)-C(231)	96.9 (3)
S(12)—Co	o(1)—O(12)	87.9 (2)	Co(2)-	O(21)N(21)	115.8 (5)
S(13)—Co	o(1)O(13)	86.6 (2)	Co(2)-	-O(22)-N(22)	115.7 (4)
Co(1)—S(11)—C(111)	96.9 (3)	Co(2)-	-O(23)-N(23)	116.9 (4)
Co(1)—S(12)—C(121)	96.9 (2)	S(31)-	-Co(3)O(31)	87.3 (2)
Co(1)—S(13)—C(131)	97.5 (3)	S(32)-	-Co(3)O(32)	88.0 (2)
Co(1)O((11)—N(11)	115.1 (5)	S(33)-	-Co(3)-O(33)	87.1 (2)
Co(1)O((12)—N(12)	116.1 (4)	Co(3)-	-S(31)-C(311)	97.1 (3)
Co(1)O((13)—N(13)	114.7 (4)	Co(3)-	-S(32)-C(325)	96.3 (2)
S(21)—Co	o(2)O(21)	87.8 (2)	Co(3)-	-S(33)-C(331)	96.8 (3)
S(22)—Co	o(2)—O(22)	87.5 (2)	Co(3)-	O(31)N(31)	116.4 (5)
S(23)—Co	o(2)—O(23)	87.5 (2)	Co(3)-	-O(32)N(32)	115.6 (4)
Co(2)-S(21)—C(211)	97.4 (3)	Co(3)-	-O(33)-N(33)	116.1 (4)

The H atoms, except those of H_2O and MeOH for (1) and MeOH for (2), were placed at calculated positions and given isotropic displacement factors derived from those of the parent atoms. The H atoms were included in the structure-factor calculations but not refined. Both structures were solved by direct methods (Main *et al.*, 1982) and refined by full-matrix least squares (Frenz, 1985).

98.1 (2)

Co(2)-S(22)-C(221)

We appreciate very much the financial support from the Climbing Program – National Key Project for Fundamental Research, the NNSF of China and the NSF of the Province of Fujian.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: MU1088). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Chen, X.-T., Hu, Y.-H., Weng, L.-H., Xu, Y.-J., Wu, D.-X. & Kang, B.-S. (1991). Polyhedron, 10, 2651-2657.
- Cromer, D. T. & Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved

- Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
- Hu, Y.-H., Weng, L.-H., Huang, L.-R., Chen, X.-T., Wu, D.-X. & Kang, B.-S. (1991). Acta Cryst. C47, 2655–2656.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kang, B.-S., Hu, Y.-H., Weng, L.-H., Wu, D.-X., Chen, X.-T. & Xu, Y.-J. (1992). J. Inorg. Biochem. 46, 231-242.
- Kang, B.-S., Peng, J.-H., Hong, M.-C., Wu, D.-X., Chen, X.-T., Weng, L.-H., Lei, X.-J. & Liu, H.-Q. (1991). J. Chem. Soc. Dalton Trans. pp. 2897–2901.
- Kang, B.-S., Weng, L.-H., Liu, H.-Q., Wu, D.-X., Huang, L.-R., Lu, C.-Z., Cai, J.-H., Chen, X.-T. & Lu, J.-X. (1990). *Inorg. Chem.* 29, 4073–4077.
- Kang, B.-S., Weng, L.-H., Wu, D.-X., Wang, F., Guo, Z., Huang, L.-R., Huang, Z.-Y. & Liu, H.-Q. (1988). *Inorg. Chem.* 27, 1128–1130.
- Kang, B.-S., Xu, Y.-J., Peng, J.-H., Wu, D.-X., Chen, X.-T., Hu, Y.-H., Hong, M.-C. & Lu, J.-X. (1993). Polyhedron, 12, 871–878.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1995). C51, 374-377

Two-Dimensional Open-Frame Host Structure of the Inclusion Compound $[Cd(tenH)_2{Ni(CN)_4}_2].4C_6H_5NH_2$ (ten = 1,4-Diazabicyclo[2.2.2]octane)

HIDETAKA YUGE AND TOSCHITAKE IWAMOTO

Department of Chemistry, College of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153, Japan

(Received 10 May 1994; accepted 11 August 1994)

Abstract

In the title inclusion compound, bis(1-azonia-4azabicyclo[2.2.2]octane)cadmium(II) bis[tetracyanonickelate(II)]-aniline (1/4), $[Cd(C_6H_{13}N_2)_2{Ni(CN)_4}_2]$.- $4C_6H_7N$, the host contains Cd^{2+} and $[Ni(CN)_4]^{2-}$ in a ratio of 1:2. The two crystallographically independent $[Ni(CN)_4]^{2-}$ anions behave as bidentate bridging ligands, spanning the Cd^{2+} cations with the N atoms of the cyano groups in *trans* positions along both the *a* and *b* axes, building up a two-dimensional network $[Cd(tenH)_2{NC-Ni(CN)_2-CN-}_2]_n$ (ten = 1,4diazabicyclo[2.2.2]octane). Two unidentate tenH ligands coordinate to the Cd in axial positions, the other Natom end being protonated. The guest aniline molecules accommodated in the interlayer space are hydrogen